Optimal. Leaf size=24 \[ \frac {1}{\left (-x+\frac {2 \left (x+\log \left (\log ^2(6+x)\right )\right )}{1-x}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 3.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8+16 x-8 x^2+\left (-12-14 x+34 x^2-6 x^3-2 x^4\right ) \log (6+x)+\left (-24+20 x+4 x^2\right ) \log (6+x) \log \left (\log ^2(6+x)\right )}{\left (6 x^3+19 x^4+21 x^5+9 x^6+x^7\right ) \log (6+x)+\left (36 x^2+78 x^3+48 x^4+6 x^5\right ) \log (6+x) \log \left (\log ^2(6+x)\right )+\left (72 x+84 x^2+12 x^3\right ) \log (6+x) \log ^2\left (\log ^2(6+x)\right )+(48+8 x) \log (6+x) \log ^3\left (\log ^2(6+x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 (1-x) \left (4 (-1+x)+(6+x) \log (6+x) \left (-1-2 x+x^2-2 \log \left (\log ^2(6+x)\right )\right )\right )}{(6+x) \log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx\\ &=2 \int \frac {(1-x) \left (4 (-1+x)+(6+x) \log (6+x) \left (-1-2 x+x^2-2 \log \left (\log ^2(6+x)\right )\right )\right )}{(6+x) \log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx\\ &=2 \int \left (-\frac {(-1+x)^2 \left (4+6 \log (6+x)+13 x \log (6+x)+2 x^2 \log (6+x)\right )}{(6+x) \log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {-1+x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {(-1+x)^2 \left (4+6 \log (6+x)+13 x \log (6+x)+2 x^2 \log (6+x)\right )}{(6+x) \log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx\right )+2 \int \frac {-1+x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx\\ &=-\left (2 \int \left (-\frac {8 \left (4+6 \log (6+x)+13 x \log (6+x)+2 x^2 \log (6+x)\right )}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {x \left (4+6 \log (6+x)+13 x \log (6+x)+2 x^2 \log (6+x)\right )}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {49 \left (4+6 \log (6+x)+13 x \log (6+x)+2 x^2 \log (6+x)\right )}{(6+x) \log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}\right ) \, dx\right )+2 \int \left (-\frac {1}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2}+\frac {x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x \left (4+6 \log (6+x)+13 x \log (6+x)+2 x^2 \log (6+x)\right )}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx\right )-2 \int \frac {1}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx+2 \int \frac {x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx+16 \int \frac {4+6 \log (6+x)+13 x \log (6+x)+2 x^2 \log (6+x)}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx-98 \int \frac {4+6 \log (6+x)+13 x \log (6+x)+2 x^2 \log (6+x)}{(6+x) \log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx\\ &=\frac {49}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2}-2 \int \frac {x \left (4+\left (6+13 x+2 x^2\right ) \log (6+x)\right )}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx-2 \int \frac {1}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx+2 \int \frac {x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx+16 \int \frac {4+\left (6+13 x+2 x^2\right ) \log (6+x)}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx\\ &=\frac {49}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2}-2 \int \frac {1}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx+2 \int \frac {x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx-2 \int \left (\frac {6 x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {13 x^2}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {2 x^3}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {4 x}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}\right ) \, dx+16 \int \left (\frac {6}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {13 x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {2 x^2}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}+\frac {4}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3}\right ) \, dx\\ &=\frac {49}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2}-2 \int \frac {1}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx+2 \int \frac {x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \, dx-4 \int \frac {x^3}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx-8 \int \frac {x}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx-12 \int \frac {x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx-26 \int \frac {x^2}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx+32 \int \frac {x^2}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx+64 \int \frac {1}{\log (6+x) \left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx+96 \int \frac {1}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx+208 \int \frac {x}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.90, size = 22, normalized size = 0.92 \begin {gather*} \frac {(-1+x)^2}{\left (x+x^2+2 \log \left (\log ^2(6+x)\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 48, normalized size = 2.00 \begin {gather*} \frac {x^{2} - 2 \, x + 1}{x^{4} + 2 \, x^{3} + x^{2} + 4 \, {\left (x^{2} + x\right )} \log \left (\log \left (x + 6\right )^{2}\right ) + 4 \, \log \left (\log \left (x + 6\right )^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.27, size = 257, normalized size = 10.71 \begin {gather*} \frac {2 \, x^{4} \log \left (x + 6\right ) + 9 \, x^{3} \log \left (x + 6\right ) - 18 \, x^{2} \log \left (x + 6\right ) + 4 \, x^{2} + x \log \left (x + 6\right ) - 8 \, x + 6 \, \log \left (x + 6\right ) + 4}{2 \, x^{6} \log \left (x + 6\right ) + 17 \, x^{5} \log \left (x + 6\right ) + 8 \, x^{4} \log \left (\log \left (x + 6\right )^{2}\right ) \log \left (x + 6\right ) + 34 \, x^{4} \log \left (x + 6\right ) + 60 \, x^{3} \log \left (\log \left (x + 6\right )^{2}\right ) \log \left (x + 6\right ) + 8 \, x^{2} \log \left (\log \left (x + 6\right )^{2}\right )^{2} \log \left (x + 6\right ) + 4 \, x^{4} + 25 \, x^{3} \log \left (x + 6\right ) + 76 \, x^{2} \log \left (\log \left (x + 6\right )^{2}\right ) \log \left (x + 6\right ) + 52 \, x \log \left (\log \left (x + 6\right )^{2}\right )^{2} \log \left (x + 6\right ) + 8 \, x^{3} + 16 \, x^{2} \log \left (\log \left (x + 6\right )^{2}\right ) + 6 \, x^{2} \log \left (x + 6\right ) + 24 \, x \log \left (\log \left (x + 6\right )^{2}\right ) \log \left (x + 6\right ) + 24 \, \log \left (\log \left (x + 6\right )^{2}\right )^{2} \log \left (x + 6\right ) + 4 \, x^{2} + 16 \, x \log \left (\log \left (x + 6\right )^{2}\right ) + 16 \, \log \left (\log \left (x + 6\right )^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 88, normalized size = 3.67
method | result | size |
risch | \(\frac {x^{2}-2 x +1}{\left (4 \ln \left (\ln \left (x +6\right )\right )-i \pi \mathrm {csgn}\left (i \ln \left (x +6\right )^{2}\right )^{3}-i \pi \mathrm {csgn}\left (i \ln \left (x +6\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (x +6\right )^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i \ln \left (x +6\right )\right ) \mathrm {csgn}\left (i \ln \left (x +6\right )^{2}\right )^{2}+x^{2}+x \right )^{2}}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 44, normalized size = 1.83 \begin {gather*} \frac {x^{2} - 2 \, x + 1}{x^{4} + 2 \, x^{3} + x^{2} + 8 \, {\left (x^{2} + x\right )} \log \left (\log \left (x + 6\right )\right ) + 16 \, \log \left (\log \left (x + 6\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\ln \left (x+6\right )\,\left (2\,x^4+6\,x^3-34\,x^2+14\,x+12\right )-16\,x+8\,x^2-\ln \left ({\ln \left (x+6\right )}^2\right )\,\ln \left (x+6\right )\,\left (4\,x^2+20\,x-24\right )+8}{\ln \left (x+6\right )\,\left (8\,x+48\right )\,{\ln \left ({\ln \left (x+6\right )}^2\right )}^3+\ln \left (x+6\right )\,\left (12\,x^3+84\,x^2+72\,x\right )\,{\ln \left ({\ln \left (x+6\right )}^2\right )}^2+\ln \left (x+6\right )\,\left (6\,x^5+48\,x^4+78\,x^3+36\,x^2\right )\,\ln \left ({\ln \left (x+6\right )}^2\right )+\ln \left (x+6\right )\,\left (x^7+9\,x^6+21\,x^5+19\,x^4+6\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.41, size = 48, normalized size = 2.00 \begin {gather*} \frac {x^{2} - 2 x + 1}{x^{4} + 2 x^{3} + x^{2} + \left (4 x^{2} + 4 x\right ) \log {\left (\log {\left (x + 6 \right )}^{2} \right )} + 4 \log {\left (\log {\left (x + 6 \right )}^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________