Optimal. Leaf size=19 \[ x \left (-\frac {e^x}{x}+\log \left (\frac {2 x^2}{3}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 16, normalized size of antiderivative = 0.84, number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2194, 2295} \begin {gather*} x \log \left (\frac {2 x^2}{3}\right )-e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 x-\int e^x \, dx+\int \log \left (\frac {2 x^2}{3}\right ) \, dx\\ &=-e^x+x \log \left (\frac {2 x^2}{3}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 16, normalized size = 0.84 \begin {gather*} -e^x+x \log \left (\frac {2 x^2}{3}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 14, normalized size = 0.74 \begin {gather*} x \log \left (\frac {2}{3}\right ) + 2 \, x \log \relax (x) - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 22, normalized size = 1.16 \begin {gather*} -x \log \relax (3) + x \log \relax (2) + 2 \, x \log \left (x \mathrm {sgn}\relax (x)\right ) - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 14, normalized size = 0.74
method | result | size |
norman | \(x \ln \left (\frac {2 x^{2}}{3}\right )-{\mathrm e}^{x}\) | \(14\) |
default | \(2 x \ln \relax (x )+x \left (\ln \left (\frac {2 x^{2}}{3}\right )-2 \ln \relax (x )\right )-{\mathrm e}^{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 13, normalized size = 0.68 \begin {gather*} x \log \left (\frac {2}{3} \, x^{2}\right ) - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.71, size = 20, normalized size = 1.05 \begin {gather*} x\,\ln \left (x^2\right )-{\mathrm {e}}^x+x\,\ln \relax (2)-x\,\ln \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 12, normalized size = 0.63 \begin {gather*} x \log {\left (\frac {2 x^{2}}{3} \right )} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________