Optimal. Leaf size=16 \[ \frac {(3-x) x (111+x)^2}{\log (x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.35, antiderivative size = 35, normalized size of antiderivative = 2.19, number of steps used = 25, number of rules used = 8, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6741, 6742, 2356, 2297, 2298, 2306, 2309, 2178} \begin {gather*} -\frac {x^4}{\log (x)}-\frac {219 x^3}{\log (x)}-\frac {11655 x^2}{\log (x)}+\frac {36963 x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2297
Rule 2298
Rule 2306
Rule 2309
Rule 2356
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(111+x) \left (-333+108 x+x^2+333 \log (x)-213 x \log (x)-4 x^2 \log (x)\right )}{\log ^2(x)} \, dx\\ &=\int \left (\frac {(-3+x) (111+x)^2}{\log ^2(x)}+\frac {36963-23310 x-657 x^2-4 x^3}{\log (x)}\right ) \, dx\\ &=\int \frac {(-3+x) (111+x)^2}{\log ^2(x)} \, dx+\int \frac {36963-23310 x-657 x^2-4 x^3}{\log (x)} \, dx\\ &=\int \left (-\frac {36963}{\log ^2(x)}+\frac {11655 x}{\log ^2(x)}+\frac {219 x^2}{\log ^2(x)}+\frac {x^3}{\log ^2(x)}\right ) \, dx+\int \left (\frac {36963}{\log (x)}-\frac {23310 x}{\log (x)}-\frac {657 x^2}{\log (x)}-\frac {4 x^3}{\log (x)}\right ) \, dx\\ &=-\left (4 \int \frac {x^3}{\log (x)} \, dx\right )+219 \int \frac {x^2}{\log ^2(x)} \, dx-657 \int \frac {x^2}{\log (x)} \, dx+11655 \int \frac {x}{\log ^2(x)} \, dx-23310 \int \frac {x}{\log (x)} \, dx-36963 \int \frac {1}{\log ^2(x)} \, dx+36963 \int \frac {1}{\log (x)} \, dx+\int \frac {x^3}{\log ^2(x)} \, dx\\ &=\frac {36963 x}{\log (x)}-\frac {11655 x^2}{\log (x)}-\frac {219 x^3}{\log (x)}-\frac {x^4}{\log (x)}+36963 \text {li}(x)+4 \int \frac {x^3}{\log (x)} \, dx-4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )+657 \int \frac {x^2}{\log (x)} \, dx-657 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+23310 \int \frac {x}{\log (x)} \, dx-23310 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-36963 \int \frac {1}{\log (x)} \, dx\\ &=-23310 \text {Ei}(2 \log (x))-657 \text {Ei}(3 \log (x))-4 \text {Ei}(4 \log (x))+\frac {36963 x}{\log (x)}-\frac {11655 x^2}{\log (x)}-\frac {219 x^3}{\log (x)}-\frac {x^4}{\log (x)}+4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )+657 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+23310 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {36963 x}{\log (x)}-\frac {11655 x^2}{\log (x)}-\frac {219 x^3}{\log (x)}-\frac {x^4}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 15, normalized size = 0.94 \begin {gather*} -\frac {(-3+x) x (111+x)^2}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 23, normalized size = 1.44 \begin {gather*} -\frac {x^{4} + 219 \, x^{3} + 11655 \, x^{2} - 36963 \, x}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 35, normalized size = 2.19 \begin {gather*} -\frac {x^{4}}{\log \relax (x)} - \frac {219 \, x^{3}}{\log \relax (x)} - \frac {11655 \, x^{2}}{\log \relax (x)} + \frac {36963 \, x}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 21, normalized size = 1.31
method | result | size |
risch | \(-\frac {x \left (x^{3}+219 x^{2}+11655 x -36963\right )}{\ln \relax (x )}\) | \(21\) |
norman | \(\frac {-x^{4}-219 x^{3}-11655 x^{2}+36963 x}{\ln \relax (x )}\) | \(25\) |
default | \(-\frac {x^{4}}{\ln \relax (x )}-\frac {219 x^{3}}{\ln \relax (x )}-\frac {11655 x^{2}}{\ln \relax (x )}+\frac {36963 x}{\ln \relax (x )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 59, normalized size = 3.69 \begin {gather*} -4 \, {\rm Ei}\left (4 \, \log \relax (x)\right ) - 657 \, {\rm Ei}\left (3 \, \log \relax (x)\right ) - 23310 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) + 36963 \, {\rm Ei}\left (\log \relax (x)\right ) - 36963 \, \Gamma \left (-1, -\log \relax (x)\right ) + 23310 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) + 657 \, \Gamma \left (-1, -3 \, \log \relax (x)\right ) + 4 \, \Gamma \left (-1, -4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.62, size = 15, normalized size = 0.94 \begin {gather*} -\frac {x\,\left (x-3\right )\,{\left (x+111\right )}^2}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 19, normalized size = 1.19 \begin {gather*} \frac {- x^{4} - 219 x^{3} - 11655 x^{2} + 36963 x}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________