Optimal. Leaf size=22 \[ \left (1-e^{\frac {81 x^3}{5+15 x^2}}\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 0.33, antiderivative size = 68, normalized size of antiderivative = 3.09, number of steps used = 4, number of rules used = 3, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {28, 6742, 2288} \begin {gather*} \frac {e^{\frac {81 x^3}{5 \left (3 x^2+1\right )}} \left (x^5+x^3\right )}{\left (3 x^2+1\right )^2 \left (\frac {2 x^4}{\left (3 x^2+1\right )^2}-\frac {x^2}{3 x^2+1}\right )}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=45 \int \frac {5+30 x^2+45 x^4+e^{\frac {81 x^3}{5+15 x^2}} \left (-5-30 x^2-243 x^3-45 x^4-243 x^5\right )}{\left (15+45 x^2\right )^2} \, dx\\ &=45 \int \left (\frac {1}{45}-\frac {e^{\frac {81 x^3}{5+15 x^2}} \left (5+30 x^2+243 x^3+45 x^4+243 x^5\right )}{225 \left (1+3 x^2\right )^2}\right ) \, dx\\ &=x-\frac {1}{5} \int \frac {e^{\frac {81 x^3}{5+15 x^2}} \left (5+30 x^2+243 x^3+45 x^4+243 x^5\right )}{\left (1+3 x^2\right )^2} \, dx\\ &=x+\frac {e^{\frac {81 x^3}{5 \left (1+3 x^2\right )}} \left (x^3+x^5\right )}{\left (1+3 x^2\right )^2 \left (\frac {2 x^4}{\left (1+3 x^2\right )^2}-\frac {x^2}{1+3 x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 21, normalized size = 0.95 \begin {gather*} x-e^{\frac {81 x^3}{5+15 x^2}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 20, normalized size = 0.91 \begin {gather*} -x e^{\left (\frac {81 \, x^{3}}{5 \, {\left (3 \, x^{2} + 1\right )}}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 20, normalized size = 0.91 \begin {gather*} -x e^{\left (\frac {81 \, x^{3}}{5 \, {\left (3 \, x^{2} + 1\right )}}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 21, normalized size = 0.95
method | result | size |
risch | \(-x \,{\mathrm e}^{\frac {81 x^{3}}{5 \left (3 x^{2}+1\right )}}+x\) | \(21\) |
norman | \(\frac {x +3 x^{3}-x \,{\mathrm e}^{\frac {81 x^{3}}{15 x^{2}+5}}-3 x^{3} {\mathrm e}^{\frac {81 x^{3}}{15 x^{2}+5}}}{3 x^{2}+1}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 22, normalized size = 1.00 \begin {gather*} -x e^{\left (\frac {27}{5} \, x - \frac {27 \, x}{5 \, {\left (3 \, x^{2} + 1\right )}}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 20, normalized size = 0.91 \begin {gather*} -x\,\left ({\mathrm {e}}^{\frac {81\,x^3}{15\,x^2+5}}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 15, normalized size = 0.68 \begin {gather*} - x e^{\frac {81 x^{3}}{15 x^{2} + 5}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________