Optimal. Leaf size=26 \[ \log \left (\frac {2}{4-\frac {3 \left (-12-e^4\right )}{x}+\frac {x}{-2+x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 35, normalized size of antiderivative = 1.35, number of steps used = 3, number of rules used = 2, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {2074, 628} \begin {gather*} -\log \left (-5 x^2-\left (28+3 e^4\right ) x+6 \left (12+e^4\right )\right )+\log (2-x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{-2+x}+\frac {1}{x}+\frac {28+3 e^4+10 x}{6 \left (12+e^4\right )-\left (28+3 e^4\right ) x-5 x^2}\right ) \, dx\\ &=\log (2-x)+\log (x)+\int \frac {28+3 e^4+10 x}{6 \left (12+e^4\right )+\left (-28-3 e^4\right ) x-5 x^2} \, dx\\ &=\log (2-x)+\log (x)-\log \left (6 \left (12+e^4\right )-\left (28+3 e^4\right ) x-5 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 33, normalized size = 1.27 \begin {gather*} \log (2-x)+\log (x)-\log \left (72+6 e^4-28 x-3 e^4 x-5 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 29, normalized size = 1.12 \begin {gather*} -\log \left (5 \, x^{2} + 3 \, {\left (x - 2\right )} e^{4} + 28 \, x - 72\right ) + \log \left (x^{2} - 2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 32, normalized size = 1.23 \begin {gather*} -\log \left ({\left | 5 \, x^{2} + 3 \, x e^{4} + 28 \, x - 6 \, e^{4} - 72 \right |}\right ) + \log \left ({\left | x - 2 \right |}\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 30, normalized size = 1.15
method | result | size |
default | \(\ln \relax (x )+\ln \left (x -2\right )-\ln \left (3 x \,{\mathrm e}^{4}+5 x^{2}-6 \,{\mathrm e}^{4}+28 x -72\right )\) | \(30\) |
norman | \(\ln \relax (x )+\ln \left (x -2\right )-\ln \left (3 x \,{\mathrm e}^{4}+5 x^{2}-6 \,{\mathrm e}^{4}+28 x -72\right )\) | \(34\) |
risch | \(-\ln \left (-5 x^{2}+\left (-3 \,{\mathrm e}^{4}-28\right ) x +6 \,{\mathrm e}^{4}+72\right )+\ln \left (-x^{2}+2 x \right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 29, normalized size = 1.12 \begin {gather*} -\log \left (5 \, x^{2} + x {\left (3 \, e^{4} + 28\right )} - 6 \, e^{4} - 72\right ) + \log \left (x - 2\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.94, size = 91, normalized size = 3.50 \begin {gather*} \mathrm {atan}\left (\frac {-x\,5008{}\mathrm {i}+{\mathrm {e}}^4\,120{}\mathrm {i}-x\,{\mathrm {e}}^4\,636{}\mathrm {i}-x\,{\mathrm {e}}^8\,18{}\mathrm {i}+x^2\,{\mathrm {e}}^4\,288{}\mathrm {i}+x^2\,{\mathrm {e}}^8\,9{}\mathrm {i}+x^2\,2124{}\mathrm {i}+1440{}\mathrm {i}}{3888\,x+120\,{\mathrm {e}}^4+516\,x\,{\mathrm {e}}^4+18\,x\,{\mathrm {e}}^8-288\,x^2\,{\mathrm {e}}^4-9\,x^2\,{\mathrm {e}}^8-2324\,x^2+1440}\right )\,2{}\mathrm {i} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.46, size = 34, normalized size = 1.31 \begin {gather*} \log {\left (x^{2} - 2 x \right )} - \log {\left (x^{2} + x \left (\frac {28}{5} + \frac {3 e^{4}}{5}\right ) - \frac {6 e^{4}}{5} - \frac {72}{5} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________