Optimal. Leaf size=25 \[ \frac {1+x+\frac {x (4+2 x)^2}{-4-x+\log (x)}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16-24 x-65 x^2-36 x^3-4 x^4+\left (8+2 x+16 x^2+8 x^3\right ) \log (x)-\log ^2(x)}{16 x^2+8 x^3+x^4+\left (-8 x^2-2 x^3\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16-24 x-65 x^2-36 x^3-4 x^4+2 \left (4+x+8 x^2+4 x^3\right ) \log (x)-\log ^2(x)}{x^2 (4+x-\log (x))^2} \, dx\\ &=\int \left (-\frac {1}{x^2}+\frac {4 (-1+x) (2+x)^2}{x (4+x-\log (x))^2}-\frac {8 (2+x)}{4+x-\log (x)}\right ) \, dx\\ &=\frac {1}{x}+4 \int \frac {(-1+x) (2+x)^2}{x (4+x-\log (x))^2} \, dx-8 \int \frac {2+x}{4+x-\log (x)} \, dx\\ &=\frac {1}{x}+4 \int \left (-\frac {4}{x (4+x-\log (x))^2}+\frac {3 x}{(4+x-\log (x))^2}+\frac {x^2}{(4+x-\log (x))^2}\right ) \, dx-8 \int \left (\frac {2}{4+x-\log (x)}+\frac {x}{4+x-\log (x)}\right ) \, dx\\ &=\frac {1}{x}+4 \int \frac {x^2}{(4+x-\log (x))^2} \, dx-8 \int \frac {x}{4+x-\log (x)} \, dx+12 \int \frac {x}{(4+x-\log (x))^2} \, dx-16 \int \frac {1}{x (4+x-\log (x))^2} \, dx-16 \int \frac {1}{4+x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 20, normalized size = 0.80 \begin {gather*} \frac {1}{x}+\frac {4 (2+x)^2}{-4-x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 33, normalized size = 1.32 \begin {gather*} -\frac {4 \, x^{3} + 16 \, x^{2} + 15 \, x + \log \relax (x) - 4}{x^{2} - x \log \relax (x) + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 23, normalized size = 0.92 \begin {gather*} -\frac {4 \, {\left (x^{2} + 4 \, x + 4\right )}}{x - \log \relax (x) + 4} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.96
method | result | size |
risch | \(\frac {1}{x}-\frac {4 \left (x^{2}+4 x +4\right )}{-\ln \relax (x )+4+x}\) | \(24\) |
norman | \(\frac {4-16 x^{2}-15 x -4 x^{3}-\ln \relax (x )}{x \left (-\ln \relax (x )+4+x \right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 33, normalized size = 1.32 \begin {gather*} -\frac {4 \, x^{3} + 16 \, x^{2} + 15 \, x + \log \relax (x) - 4}{x^{2} - x \log \relax (x) + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.02, size = 37, normalized size = 1.48 \begin {gather*} \frac {81\,x-\ln \relax (x)-24\,x\,\ln \relax (x)+8\,x^2-4\,x^3+4}{x\,\left (x-\ln \relax (x)+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.76 \begin {gather*} \frac {4 x^{2} + 16 x + 16}{- x + \log {\relax (x )} - 4} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________