Optimal. Leaf size=29 \[ e^{x^2}-\frac {x^2}{-x+\frac {x}{\log ^2(-30+x)}-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 7.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x^2} \left (-60 x^3+2 x^4\right )-2 x^3 \log (-30+x)+\left (30 x^2-x^3+e^{x^2} \left (120 x^3-4 x^4\right )\right ) \log ^2(-30+x)+\left (30 x-31 x^2+x^3+e^{x^2} \left (-60 x^3+2 x^4\right )\right ) \log ^4(-30+x)+\left (e^{x^2} \left (120 x^2-4 x^3\right ) \log ^2(-30+x)+\left (-60 x+2 x^2+e^{x^2} \left (-120 x^2+4 x^3\right )\right ) \log ^4(-30+x)\right ) \log (x)+e^{x^2} \left (-60 x+2 x^2\right ) \log ^4(-30+x) \log ^2(x)}{-30 x^2+x^3+\left (60 x^2-2 x^3\right ) \log ^2(-30+x)+\left (-30 x^2+x^3\right ) \log ^4(-30+x)+\left (\left (60 x-2 x^2\right ) \log ^2(-30+x)+\left (-60 x+2 x^2\right ) \log ^4(-30+x)\right ) \log (x)+(-30+x) \log ^4(-30+x) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-2 e^{x^2} (-30+x) x^2+2 x^2 \log (-30+x)+(-30+x) x \log ^2(-30+x) \left (1+4 e^{x^2} x+4 e^{x^2} \log (x)\right )-(-30+x) \log ^4(-30+x) \left (-1+x+2 e^{x^2} x^2+\left (2+4 e^{x^2} x\right ) \log (x)+2 e^{x^2} \log ^2(x)\right )\right )}{(30-x) \left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx\\ &=\int \left (2 e^{x^2} x-\frac {2 x^3 \log (-30+x)}{(-30+x) \left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}-\frac {x^2 \log ^2(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}-\frac {x \log ^4(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}+\frac {x^2 \log ^4(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}+\frac {2 x \log ^4(-30+x) \log (x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}\right ) \, dx\\ &=2 \int e^{x^2} x \, dx-2 \int \frac {x^3 \log (-30+x)}{(-30+x) \left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx+2 \int \frac {x \log ^4(-30+x) \log (x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx-\int \frac {x^2 \log ^2(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx-\int \frac {x \log ^4(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx+\int \frac {x^2 \log ^4(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx\\ &=e^{x^2}-2 \int \frac {x^3 \log (-30+x)}{(-30+x) \left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+2 \int \frac {x \log ^4(-30+x) \log (x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x^2 \log ^2(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+\int \frac {x^2 \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx\\ &=e^{x^2}-2 \int \left (\frac {900 \log (-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}+\frac {27000 \log (-30+x)}{(-30+x) \left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}+\frac {30 x \log (-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}+\frac {x^2 \log (-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}\right ) \, dx+2 \int \left (-\frac {x^2 \log ^2(-30+x) \left (-1+\log ^2(-30+x)\right )}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}+\frac {x \log ^2(-30+x)}{-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)}\right ) \, dx-\int \frac {x^2 \log ^2(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+\int \frac {x^2 \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx\\ &=e^{x^2}-2 \int \frac {x^2 \log (-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx-2 \int \frac {x^2 \log ^2(-30+x) \left (-1+\log ^2(-30+x)\right )}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx+2 \int \frac {x \log ^2(-30+x)}{-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)} \, dx-60 \int \frac {x \log (-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx-1800 \int \frac {\log (-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx-54000 \int \frac {\log (-30+x)}{(-30+x) \left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx-\int \frac {x^2 \log ^2(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+\int \frac {x^2 \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx\\ &=e^{x^2}-2 \int \frac {x^2 \log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-2 \int \frac {x^2 \log ^2(-30+x) \left (-1+\log ^2(-30+x)\right )}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+2 \int \frac {x \log ^2(-30+x)}{-x+\log ^2(-30+x) (x+\log (x))} \, dx-60 \int \frac {x \log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-1800 \int \frac {\log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-54000 \int \frac {\log (-30+x)}{(-30+x) \left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x^2 \log ^2(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+\int \frac {x^2 \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx\\ &=e^{x^2}-2 \int \frac {x^2 \log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+2 \int \frac {x \log ^2(-30+x)}{-x+\log ^2(-30+x) (x+\log (x))} \, dx-2 \int \left (-\frac {x^2 \log ^2(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}+\frac {x^2 \log ^4(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2}\right ) \, dx-60 \int \frac {x \log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-1800 \int \frac {\log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-54000 \int \frac {\log (-30+x)}{(-30+x) \left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x^2 \log ^2(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+\int \frac {x^2 \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx\\ &=e^{x^2}+2 \int \frac {x^2 \log ^2(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx-2 \int \frac {x^2 \log ^4(-30+x)}{\left (-x+x \log ^2(-30+x)+\log ^2(-30+x) \log (x)\right )^2} \, dx-2 \int \frac {x^2 \log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+2 \int \frac {x \log ^2(-30+x)}{-x+\log ^2(-30+x) (x+\log (x))} \, dx-60 \int \frac {x \log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-1800 \int \frac {\log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-54000 \int \frac {\log (-30+x)}{(-30+x) \left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x^2 \log ^2(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+\int \frac {x^2 \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx\\ &=e^{x^2}-2 \int \frac {x^2 \log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+2 \int \frac {x^2 \log ^2(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-2 \int \frac {x^2 \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+2 \int \frac {x \log ^2(-30+x)}{-x+\log ^2(-30+x) (x+\log (x))} \, dx-60 \int \frac {x \log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-1800 \int \frac {\log (-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-54000 \int \frac {\log (-30+x)}{(-30+x) \left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x^2 \log ^2(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx-\int \frac {x \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx+\int \frac {x^2 \log ^4(-30+x)}{\left (x-\log ^2(-30+x) (x+\log (x))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 33, normalized size = 1.14 \begin {gather*} e^{x^2}+\frac {x^2 \log ^2(-30+x)}{-x+\log ^2(-30+x) (x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.07, size = 62, normalized size = 2.14 \begin {gather*} \frac {e^{\left (x^{2}\right )} \log \left (x - 30\right )^{2} \log \relax (x) + {\left (x^{2} + x e^{\left (x^{2}\right )}\right )} \log \left (x - 30\right )^{2} - x e^{\left (x^{2}\right )}}{x \log \left (x - 30\right )^{2} + \log \left (x - 30\right )^{2} \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.87, size = 67, normalized size = 2.31 \begin {gather*} \frac {x^{2} \log \left (x - 30\right )^{2} + x e^{\left (x^{2}\right )} \log \left (x - 30\right )^{2} + e^{\left (x^{2}\right )} \log \left (x - 30\right )^{2} \log \relax (x) - x e^{\left (x^{2}\right )}}{x \log \left (x - 30\right )^{2} + \log \left (x - 30\right )^{2} \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 59, normalized size = 2.03
method | result | size |
risch | \(\frac {x^{2}+{\mathrm e}^{x^{2}} x +{\mathrm e}^{x^{2}} \ln \relax (x )}{x +\ln \relax (x )}+\frac {x^{3}}{\left (x +\ln \relax (x )\right ) \left (\ln \left (x -30\right )^{2} \ln \relax (x )+x \ln \left (x -30\right )^{2}-x \right )}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 49, normalized size = 1.69 \begin {gather*} \frac {x^{2} \log \left (x - 30\right )^{2} + {\left ({\left (x + \log \relax (x)\right )} \log \left (x - 30\right )^{2} - x\right )} e^{\left (x^{2}\right )}}{{\left (x + \log \relax (x)\right )} \log \left (x - 30\right )^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.17, size = 317, normalized size = 10.93 \begin {gather*} 2\,x+{\mathrm {e}}^{x^2}+\frac {2}{x+1}-\frac {\frac {x^2\,\left (x-1\right )}{x+1}+\frac {2\,x^2\,\ln \relax (x)}{x+1}}{x+\ln \relax (x)}+\frac {x^2\,{\left (30\,x-x^2\right )}^2\,\left (4\,x^4+12\,x^3\,\ln \relax (x)+11\,x^2\,{\ln \relax (x)}^2+2\,x^2\,\ln \relax (x)-x^2+4\,x\,{\ln \relax (x)}^3+60\,x\,{\ln \relax (x)}^2-120\,x\,\ln \relax (x)+60\,x-900\,{\ln \relax (x)}^2+1800\,\ln \relax (x)-900\right )}{\left (x-{\ln \left (x-30\right )}^2\,\left (x+\ln \relax (x)\right )\right )\,\left (x-30\right )\,\left (-4\,x^7-16\,x^6\,\ln \relax (x)+120\,x^6-23\,x^5\,{\ln \relax (x)}^2+478\,x^5\,\ln \relax (x)+x^5-15\,x^4\,{\ln \relax (x)}^3+628\,x^4\,{\ln \relax (x)}^2+181\,x^4\,\ln \relax (x)-90\,x^4-4\,x^3\,{\ln \relax (x)}^4+390\,x^3\,{\ln \relax (x)}^3+2880\,x^3\,{\ln \relax (x)}^2-5490\,x^3\,\ln \relax (x)+2700\,x^3+120\,x^2\,{\ln \relax (x)}^4+2700\,x^2\,{\ln \relax (x)}^3-32400\,x^2\,{\ln \relax (x)}^2+56700\,x^2\,\ln \relax (x)-27000\,x^2-27000\,x\,{\ln \relax (x)}^3+54000\,x\,{\ln \relax (x)}^2-27000\,x\,\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.85, size = 46, normalized size = 1.59 \begin {gather*} \frac {x^{3}}{- x^{2} - x \log {\relax (x )} + \left (x^{2} + 2 x \log {\relax (x )} + \log {\relax (x )}^{2}\right ) \log {\left (x - 30 \right )}^{2}} + \frac {x^{2}}{x + \log {\relax (x )}} + e^{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________