Optimal. Leaf size=21 \[ x-\left (\frac {11}{6}-\frac {5 x}{4}\right ) x (5+x) \log (4+x) \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 43, normalized size of antiderivative = 2.05, number of steps used = 14, number of rules used = 7, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {6742, 1850, 2417, 2389, 2295, 2395, 43} \begin {gather*} \frac {5}{4} x^3 \log (x+4)+\frac {53}{12} x^2 \log (x+4)+x-\frac {55}{6} (x+4) \log (x+4)+\frac {110}{3} \log (x+4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 1850
Rule 2295
Rule 2389
Rule 2395
Rule 2417
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {48-98 x+53 x^2+15 x^3}{12 (4+x)}+\frac {1}{12} \left (-110+106 x+45 x^2\right ) \log (4+x)\right ) \, dx\\ &=\frac {1}{12} \int \frac {48-98 x+53 x^2+15 x^3}{4+x} \, dx+\frac {1}{12} \int \left (-110+106 x+45 x^2\right ) \log (4+x) \, dx\\ &=\frac {1}{12} \int \left (-70-7 x+15 x^2+\frac {328}{4+x}\right ) \, dx+\frac {1}{12} \int \left (-110 \log (4+x)+106 x \log (4+x)+45 x^2 \log (4+x)\right ) \, dx\\ &=-\frac {35 x}{6}-\frac {7 x^2}{24}+\frac {5 x^3}{12}+\frac {82}{3} \log (4+x)+\frac {15}{4} \int x^2 \log (4+x) \, dx+\frac {53}{6} \int x \log (4+x) \, dx-\frac {55}{6} \int \log (4+x) \, dx\\ &=-\frac {35 x}{6}-\frac {7 x^2}{24}+\frac {5 x^3}{12}+\frac {82}{3} \log (4+x)+\frac {53}{12} x^2 \log (4+x)+\frac {5}{4} x^3 \log (4+x)-\frac {5}{4} \int \frac {x^3}{4+x} \, dx-\frac {53}{12} \int \frac {x^2}{4+x} \, dx-\frac {55}{6} \operatorname {Subst}(\int \log (x) \, dx,x,4+x)\\ &=\frac {10 x}{3}-\frac {7 x^2}{24}+\frac {5 x^3}{12}+\frac {82}{3} \log (4+x)+\frac {53}{12} x^2 \log (4+x)+\frac {5}{4} x^3 \log (4+x)-\frac {55}{6} (4+x) \log (4+x)-\frac {5}{4} \int \left (16-4 x+x^2-\frac {64}{4+x}\right ) \, dx-\frac {53}{12} \int \left (-4+x+\frac {16}{4+x}\right ) \, dx\\ &=x+\frac {110}{3} \log (4+x)+\frac {53}{12} x^2 \log (4+x)+\frac {5}{4} x^3 \log (4+x)-\frac {55}{6} (4+x) \log (4+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 33, normalized size = 1.57 \begin {gather*} \frac {1}{12} \left (12 x-110 x \log (4+x)+53 x^2 \log (4+x)+15 x^3 \log (4+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 22, normalized size = 1.05 \begin {gather*} \frac {1}{12} \, {\left (15 \, x^{3} + 53 \, x^{2} - 110 \, x\right )} \log \left (x + 4\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 22, normalized size = 1.05 \begin {gather*} \frac {1}{12} \, {\left (15 \, x^{3} + 53 \, x^{2} - 110 \, x\right )} \log \left (x + 4\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 22, normalized size = 1.05
method | result | size |
risch | \(\left (\frac {5}{4} x^{3}+\frac {53}{12} x^{2}-\frac {55}{6} x \right ) \ln \left (4+x \right )+x\) | \(22\) |
norman | \(x +\frac {53 x^{2} \ln \left (4+x \right )}{12}+\frac {5 x^{3} \ln \left (4+x \right )}{4}-\frac {55 \ln \left (4+x \right ) x}{6}\) | \(28\) |
derivativedivides | \(\frac {5 \ln \left (4+x \right ) \left (4+x \right )^{3}}{4}-\frac {127 \ln \left (4+x \right ) \left (4+x \right )^{2}}{12}+\frac {31 \left (4+x \right ) \ln \left (4+x \right )}{2}+4+x +\frac {82 \ln \left (4+x \right )}{3}\) | \(41\) |
default | \(\frac {5 \ln \left (4+x \right ) \left (4+x \right )^{3}}{4}-\frac {127 \ln \left (4+x \right ) \left (4+x \right )^{2}}{12}+\frac {31 \left (4+x \right ) \ln \left (4+x \right )}{2}+4+x +\frac {82 \ln \left (4+x \right )}{3}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 67, normalized size = 3.19 \begin {gather*} \frac {5}{4} \, {\left (x^{3} - 6 \, x^{2} + 48 \, x - 192 \, \log \left (x + 4\right )\right )} \log \left (x + 4\right ) + \frac {143}{12} \, {\left (x^{2} - 8 \, x + 32 \, \log \left (x + 4\right )\right )} \log \left (x + 4\right ) + \frac {157}{6} \, {\left (x - 4 \, \log \left (x + 4\right )\right )} \log \left (x + 4\right ) - \frac {110}{3} \, \log \left (x + 4\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.61, size = 30, normalized size = 1.43 \begin {gather*} \frac {53\,x^2\,\ln \left (x+4\right )}{12}+\frac {5\,x^3\,\ln \left (x+4\right )}{4}-x\,\left (\frac {55\,\ln \left (x+4\right )}{6}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 1.14 \begin {gather*} x + \left (\frac {5 x^{3}}{4} + \frac {53 x^{2}}{12} - \frac {55 x}{6}\right ) \log {\left (x + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________