Optimal. Leaf size=29 \[ e^{2-x}-x+\log \left (\frac {1}{9} \left (2+e^{x (4+x)}+\log (x)\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2-2 x-2 e^{2-x} x+e^{4 x+x^2} \left (7 x-e^{2-x} x+4 x^2\right )+\left (-x-e^{2-x} x\right ) \log (x)}{2 x+e^{4 x+x^2} x+x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{-x} \left (-e^2+7 e^x+4 e^x x\right )-\frac {2 \left (-1+8 x+4 x^2+4 x \log (x)+2 x^2 \log (x)\right )}{x \left (2+e^{x (4+x)}+\log (x)\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-1+8 x+4 x^2+4 x \log (x)+2 x^2 \log (x)}{x \left (2+e^{x (4+x)}+\log (x)\right )} \, dx\right )+\int e^{-x} \left (-e^2+7 e^x+4 e^x x\right ) \, dx\\ &=-\left (2 \int \left (\frac {8}{2+e^{x (4+x)}+\log (x)}-\frac {1}{x \left (2+e^{x (4+x)}+\log (x)\right )}+\frac {4 x}{2+e^{x (4+x)}+\log (x)}+\frac {4 \log (x)}{2+e^{x (4+x)}+\log (x)}+\frac {2 x \log (x)}{2+e^{x (4+x)}+\log (x)}\right ) \, dx\right )+\int \left (7-e^{2-x}+4 x\right ) \, dx\\ &=7 x+2 x^2+2 \int \frac {1}{x \left (2+e^{x (4+x)}+\log (x)\right )} \, dx-4 \int \frac {x \log (x)}{2+e^{x (4+x)}+\log (x)} \, dx-8 \int \frac {x}{2+e^{x (4+x)}+\log (x)} \, dx-8 \int \frac {\log (x)}{2+e^{x (4+x)}+\log (x)} \, dx-16 \int \frac {1}{2+e^{x (4+x)}+\log (x)} \, dx-\int e^{2-x} \, dx\\ &=e^{2-x}+7 x+2 x^2+2 \int \frac {1}{x \left (2+e^{x (4+x)}+\log (x)\right )} \, dx-4 \int \frac {x \log (x)}{2+e^{x (4+x)}+\log (x)} \, dx-8 \int \frac {x}{2+e^{x (4+x)}+\log (x)} \, dx-8 \int \frac {\log (x)}{2+e^{x (4+x)}+\log (x)} \, dx-16 \int \frac {1}{2+e^{x (4+x)}+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 4.44, size = 25, normalized size = 0.86 \begin {gather*} e^{2-x}-x+2 \log \left (2+e^{x (4+x)}+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 25, normalized size = 0.86 \begin {gather*} -x + e^{\left (-x + 2\right )} + 2 \, \log \left (e^{\left (x^{2} + 4 \, x\right )} + \log \relax (x) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 57, normalized size = 1.97 \begin {gather*} -{\left (x e^{\left (x^{2} + 4 \, x\right )} - 2 \, e^{\left (x^{2} + 4 \, x\right )} \log \left (e^{\left (x^{2} + 4 \, x\right )} + \log \relax (x) + 2\right ) - e^{\left (x^{2} + 3 \, x + 2\right )}\right )} e^{\left (-x^{2} - 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 0.83
method | result | size |
risch | \(-x +2 \ln \left (2+{\mathrm e}^{\left (4+x \right ) x}+\ln \relax (x )\right )+{\mathrm e}^{2-x}\) | \(24\) |
default | \(-x +2 \ln \left (\ln \relax (x )+{\mathrm e}^{x^{2}+4 x}+2\right )+{\mathrm e}^{2-x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 34, normalized size = 1.17 \begin {gather*} {\left (7 \, x e^{x} + e^{2}\right )} e^{\left (-x\right )} + 2 \, \log \left ({\left (e^{\left (x^{2} + 4 \, x\right )} + \log \relax (x) + 2\right )} e^{\left (-4 \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.81, size = 26, normalized size = 0.90 \begin {gather*} 2\,\ln \left (\ln \relax (x)+{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{x^2}+2\right )-x+{\mathrm {e}}^{2-x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 22, normalized size = 0.76 \begin {gather*} - x + e^{2 - x} + 2 \log {\left (e^{x^{2} + 4 x} + \log {\relax (x )} + 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________