Optimal. Leaf size=26 \[ 5+e^x \sqrt [3]{2+e^x-\log \left (\frac {5}{2}\right )}-x \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.80, antiderivative size = 25, normalized size of antiderivative = 0.96, number of steps used = 8, number of rules used = 6, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {6741, 12, 6742, 2282, 34, 2295} \begin {gather*} e^x \sqrt [3]{e^x+2-\log \left (\frac {5}{2}\right )}-x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 34
Rule 2282
Rule 2295
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 e^x+e^{\frac {1}{3} \left (3 x+\log \left (2+e^x-\log \left (\frac {5}{2}\right )\right )\right )} \left (6+4 e^x-3 \log \left (\frac {5}{2}\right )\right )-6 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )+\left (-6-3 e^x+3 \log \left (\frac {5}{2}\right )\right ) \log (x)}{3 \left (e^x+2 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )\right )} \, dx\\ &=\frac {1}{3} \int \frac {-3 e^x+e^{\frac {1}{3} \left (3 x+\log \left (2+e^x-\log \left (\frac {5}{2}\right )\right )\right )} \left (6+4 e^x-3 \log \left (\frac {5}{2}\right )\right )-6 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )+\left (-6-3 e^x+3 \log \left (\frac {5}{2}\right )\right ) \log (x)}{e^x+2 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {e^x \left (4 e^x+6 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )\right )}{\left (e^x+2 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )\right )^{2/3}}-3 (1+\log (x))\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^x \left (4 e^x+6 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )\right )}{\left (e^x+2 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )\right )^{2/3}} \, dx-\int (1+\log (x)) \, dx\\ &=-x+\frac {1}{3} \operatorname {Subst}\left (\int \frac {6+4 x-3 \log \left (\frac {5}{2}\right )}{\left (2+x-\log \left (\frac {5}{2}\right )\right )^{2/3}} \, dx,x,e^x\right )-\int \log (x) \, dx\\ &=e^x \sqrt [3]{2+e^x-\log \left (\frac {5}{2}\right )}-x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 30, normalized size = 1.15 \begin {gather*} \frac {1}{3} \left (3 e^x \sqrt [3]{2+e^x-\log \left (\frac {5}{2}\right )}-3 x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, e^{x} + 3 \, \log \left (\frac {2}{5}\right ) + 6\right )} e^{\left (x + \frac {1}{3} \, \log \left (e^{x} + \log \left (\frac {2}{5}\right ) + 2\right )\right )} - 3 \, {\left (e^{x} + \log \left (\frac {2}{5}\right ) + 2\right )} \log \relax (x) - 3 \, e^{x} - 3 \, \log \left (\frac {2}{5}\right ) - 6}{3 \, {\left (e^{x} + \log \left (\frac {2}{5}\right ) + 2\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (4 \,{\mathrm e}^{x}+3 \ln \left (\frac {2}{5}\right )+6\right ) {\mathrm e}^{\frac {\ln \left ({\mathrm e}^{x}+\ln \left (\frac {2}{5}\right )+2\right )}{3}+x}+\left (-3 \,{\mathrm e}^{x}-3 \ln \left (\frac {2}{5}\right )-6\right ) \ln \relax (x )-3 \,{\mathrm e}^{x}-3 \ln \left (\frac {2}{5}\right )-6}{3 \,{\mathrm e}^{x}+3 \ln \left (\frac {2}{5}\right )+6}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 123, normalized size = 4.73 \begin {gather*} -{\left (\frac {x}{\log \left (\frac {2}{5}\right ) + 2} - \frac {\log \left (e^{x} + \log \left (\frac {2}{5}\right ) + 2\right )}{\log \left (\frac {2}{5}\right ) + 2}\right )} \log \left (\frac {2}{5}\right ) - x \log \relax (x) + {\left (e^{x} + 3 \, \log \relax (5) - 3 \, \log \relax (2) - 6\right )} {\left (e^{x} - \log \relax (5) + \log \relax (2) + 2\right )}^{\frac {1}{3}} + 3 \, {\left (e^{x} - \log \relax (5) + \log \relax (2) + 2\right )}^{\frac {1}{3}} \log \left (\frac {2}{5}\right ) + x + 6 \, {\left (e^{x} - \log \relax (5) + \log \relax (2) + 2\right )}^{\frac {1}{3}} - \frac {2 \, x}{\log \left (\frac {2}{5}\right ) + 2} + \frac {2 \, \log \left (e^{x} + \log \left (\frac {2}{5}\right ) + 2\right )}{\log \left (\frac {2}{5}\right ) + 2} - \log \left (e^{x} + \log \left (\frac {2}{5}\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {3\,\ln \left (\frac {2}{5}\right )+3\,{\mathrm {e}}^x-{\mathrm {e}}^{x+\frac {\ln \left (\ln \left (\frac {2}{5}\right )+{\mathrm {e}}^x+2\right )}{3}}\,\left (3\,\ln \left (\frac {2}{5}\right )+4\,{\mathrm {e}}^x+6\right )+\ln \relax (x)\,\left (3\,\ln \left (\frac {2}{5}\right )+3\,{\mathrm {e}}^x+6\right )+6}{3\,\ln \left (\frac {2}{5}\right )+3\,{\mathrm {e}}^x+6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________