Optimal. Leaf size=27 \[ 2+\log (3) \left (1-x+\frac {\log (20 x)}{5-x-3 x \log (2)}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.89, antiderivative size = 100, normalized size of antiderivative = 3.70, number of steps used = 13, number of rules used = 8, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {6, 6688, 12, 6742, 44, 43, 2314, 31} \begin {gather*} \frac {x \log (3) (1+\log (8)) \log (20 x)}{5 (5-x (1+\log (8)))}-x \log (3)+\frac {1}{5} \log (3) \log (x)-\frac {\log (3) (26+\log (8))}{(1+\log (8)) (5-x (1+\log (8)))}+\frac {25 \log (3)}{(1+\log (8)) (5-x (1+\log (8)))}+\frac {\log (3)}{5-x (1+\log (8))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 31
Rule 43
Rule 44
Rule 2314
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (5-26 x+10 x^2-x^3+\left (-3 x+30 x^2-6 x^3\right ) \log (2)-9 x^3 \log ^2(2)\right ) \log (3)+(x+3 x \log (2)) \log (3) \log (20 x)}{25 x-10 x^2+\left (-30 x^2+6 x^3\right ) \log (2)+x^3 \left (1+9 \log ^2(2)\right )} \, dx\\ &=\int \frac {\log (3) \left (5+10 x^2 (1+\log (8))-x^3 (1+\log (8))^2-x (26+\log (8))+x (1+\log (8)) \log (20 x)\right )}{x (5-x (1+\log (8)))^2} \, dx\\ &=\log (3) \int \frac {5+10 x^2 (1+\log (8))-x^3 (1+\log (8))^2-x (26+\log (8))+x (1+\log (8)) \log (20 x)}{x (5-x (1+\log (8)))^2} \, dx\\ &=\log (3) \int \left (\frac {5}{x (5-x (1+\log (8)))^2}+\frac {-26-\log (8)}{(5-x (1+\log (8)))^2}+\frac {10 x (1+\log (8))}{(5-x (1+\log (8)))^2}-\frac {x^2 (1+\log (8))^2}{(5-x (1+\log (8)))^2}+\frac {(1+\log (8)) \log (20 x)}{(5-x (1+\log (8)))^2}\right ) \, dx\\ &=-\frac {\log (3) (26+\log (8))}{(1+\log (8)) (5-x (1+\log (8)))}+(5 \log (3)) \int \frac {1}{x (5-x (1+\log (8)))^2} \, dx+(\log (3) (1+\log (8))) \int \frac {\log (20 x)}{(5+x (-1-\log (8)))^2} \, dx+(10 \log (3) (1+\log (8))) \int \frac {x}{(5-x (1+\log (8)))^2} \, dx-\left (\log (3) (1+\log (8))^2\right ) \int \frac {x^2}{(5-x (1+\log (8)))^2} \, dx\\ &=-\frac {\log (3) (26+\log (8))}{(1+\log (8)) (5-x (1+\log (8)))}+\frac {x \log (3) (1+\log (8)) \log (20 x)}{5 (5-x (1+\log (8)))}+(5 \log (3)) \int \left (\frac {1}{25 x}+\frac {1+\log (8)}{5 (5-x (1+\log (8)))^2}+\frac {1+\log (8)}{25 (5-x (1+\log (8)))}\right ) \, dx-\frac {1}{5} (\log (3) (1+\log (8))) \int \frac {1}{5+x (-1-\log (8))} \, dx+(10 \log (3) (1+\log (8))) \int \left (\frac {5}{(1+\log (8)) (5-x (1+\log (8)))^2}+\frac {1}{(-1-\log (8)) (5-x (1+\log (8)))}\right ) \, dx-\left (\log (3) (1+\log (8))^2\right ) \int \left (\frac {1}{(1+\log (8))^2}+\frac {25}{(1+\log (8))^2 (5-x (1+\log (8)))^2}+\frac {10}{(1+\log (8))^2 (-5+x (1+\log (8)))}\right ) \, dx\\ &=-x \log (3)+\frac {\log (3)}{5-x (1+\log (8))}+\frac {25 \log (3)}{(1+\log (8)) (5-x (1+\log (8)))}-\frac {\log (3) (26+\log (8))}{(1+\log (8)) (5-x (1+\log (8)))}+\frac {1}{5} \log (3) \log (x)+\frac {x \log (3) (1+\log (8)) \log (20 x)}{5 (5-x (1+\log (8)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 23, normalized size = 0.85 \begin {gather*} \log (3) \left (-x+\frac {\log (20 x)}{5-x (1+\log (8))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 37, normalized size = 1.37 \begin {gather*} -\frac {{\left (3 \, x^{2} \log \relax (2) + x^{2} - 5 \, x\right )} \log \relax (3) + \log \relax (3) \log \left (20 \, x\right )}{3 \, x \log \relax (2) + x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 40, normalized size = 1.48 \begin {gather*} -x \log \relax (3) - \frac {2 \, \log \relax (3) \log \relax (2)}{3 \, x \log \relax (2) + x - 5} - \frac {\log \relax (3) \log \left (5 \, x\right )}{3 \, x \log \relax (2) + x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 0.93
method | result | size |
risch | \(-\frac {\ln \relax (3) \ln \left (20 x \right )}{3 x \ln \relax (2)+x -5}-x \ln \relax (3)\) | \(25\) |
norman | \(\frac {-\ln \relax (3) \ln \left (20 x \right )+\left (-3 \ln \relax (2) \ln \relax (3)-\ln \relax (3)\right ) x^{2}+5 x \ln \relax (3)}{3 x \ln \relax (2)+x -5}\) | \(41\) |
derivativedivides | \(\frac {\ln \relax (3) \left (\frac {12 \ln \relax (2) \ln \left (-100+20 \left (3 \ln \relax (2)+1\right ) x \right )}{3 \ln \relax (2)+1}-\frac {240 \ln \relax (2) \ln \left (20 x \right ) x}{60 x \ln \relax (2)+20 x -100}+\frac {4 \ln \left (-100+20 \left (3 \ln \relax (2)+1\right ) x \right )}{3 \ln \relax (2)+1}-\frac {80 \ln \left (20 x \right ) x}{60 x \ln \relax (2)+20 x -100}-20 x -\frac {12 \ln \left (60 x \ln \relax (2)+20 x -100\right ) \ln \relax (2)}{3 \ln \relax (2)+1}-\frac {4 \ln \left (60 x \ln \relax (2)+20 x -100\right )}{3 \ln \relax (2)+1}+4 \ln \left (20 x \right )\right )}{20}\) | \(145\) |
default | \(\frac {\ln \relax (3) \left (\frac {12 \ln \relax (2) \ln \left (-100+20 \left (3 \ln \relax (2)+1\right ) x \right )}{3 \ln \relax (2)+1}-\frac {240 \ln \relax (2) \ln \left (20 x \right ) x}{60 x \ln \relax (2)+20 x -100}+\frac {4 \ln \left (-100+20 \left (3 \ln \relax (2)+1\right ) x \right )}{3 \ln \relax (2)+1}-\frac {80 \ln \left (20 x \right ) x}{60 x \ln \relax (2)+20 x -100}-20 x -\frac {12 \ln \left (60 x \ln \relax (2)+20 x -100\right ) \ln \relax (2)}{3 \ln \relax (2)+1}-\frac {4 \ln \left (60 x \ln \relax (2)+20 x -100\right )}{3 \ln \relax (2)+1}+4 \ln \left (20 x \right )\right )}{20}\) | \(145\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 678, normalized size = 25.11 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {\ln \relax (3)\,\left (26\,x+9\,x^3\,{\ln \relax (2)}^2+\ln \relax (2)\,\left (6\,x^3-30\,x^2+3\,x\right )-10\,x^2+x^3-5\right )-\ln \left (20\,x\right )\,\ln \relax (3)\,\left (x+3\,x\,\ln \relax (2)\right )}{25\,x+9\,x^3\,{\ln \relax (2)}^2-\ln \relax (2)\,\left (30\,x^2-6\,x^3\right )-10\,x^2+x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 24, normalized size = 0.89 \begin {gather*} - x \log {\relax (3 )} - \frac {\log {\relax (3 )} \log {\left (20 x \right )}}{x + 3 x \log {\relax (2 )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________