Optimal. Leaf size=30 \[ x \left (3-\log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (\frac {1}{3} (-3-x) x\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-75-53 x-2 x^2\right ) \log ^2(25+x)+\left (-15 x-5 x^2\right ) \log \left (\frac {1}{3} \left (-3 x-x^2\right )\right )+\left (-1125-420 x-15 x^2\right ) \log (25+x) \log \left (\frac {1}{3} \left (-3 x-x^2\right )\right )+\left (225+84 x+3 x^2\right ) \log ^2(25+x) \log \left (\frac {1}{3} \left (-3 x-x^2\right )\right ) \log \left (\log \left (\frac {1}{3} \left (-3 x-x^2\right )\right )\right )+\left (\left (375+140 x+5 x^2\right ) \log (25+x) \log \left (\frac {1}{3} \left (-3 x-x^2\right )\right )+\left (-75-28 x-x^2\right ) \log ^2(25+x) \log \left (\frac {1}{3} \left (-3 x-x^2\right )\right ) \log \left (\log \left (\frac {1}{3} \left (-3 x-x^2\right )\right )\right )\right ) \log \left (\frac {5-\log (25+x) \log \left (\log \left (\frac {1}{3} \left (-3 x-x^2\right )\right )\right )}{\log (25+x)}\right )}{\left (-375-140 x-5 x^2\right ) \log (25+x) \log \left (\frac {1}{3} \left (-3 x-x^2\right )\right )+\left (75+28 x+x^2\right ) \log ^2(25+x) \log \left (\frac {1}{3} \left (-3 x-x^2\right )\right ) \log \left (\log \left (\frac {1}{3} \left (-3 x-x^2\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {15}{-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )}-\frac {5 x}{(25+x) \log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}+\frac {\log (25+x) \left (-3-2 x+3 (3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}-\log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )\right ) \, dx\\ &=-\left (5 \int \frac {x}{(25+x) \log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx\right )-15 \int \frac {1}{-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )} \, dx+\int \frac {\log (25+x) \left (-3-2 x+3 (3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-\int \log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right ) \, dx\\ &=-\left (5 \int \left (\frac {1}{\log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}-\frac {25}{(25+x) \log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}\right ) \, dx\right )-15 \int \frac {1}{-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )} \, dx+\int \left (3+\frac {45 \log \left (-\frac {1}{3} x (3+x)\right )+15 x \log \left (-\frac {1}{3} x (3+x)\right )-3 \log (25+x)-2 x \log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}\right ) \, dx-\int \log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right ) \, dx\\ &=3 x-5 \int \frac {1}{\log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-15 \int \frac {1}{-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )} \, dx+125 \int \frac {1}{(25+x) \log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx+\int \frac {45 \log \left (-\frac {1}{3} x (3+x)\right )+15 x \log \left (-\frac {1}{3} x (3+x)\right )-3 \log (25+x)-2 x \log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-\int \log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right ) \, dx\\ &=3 x-5 \int \frac {1}{\log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-15 \int \frac {1}{-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )} \, dx+125 \int \frac {1}{(25+x) \log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx+\int \left (\frac {45}{(3+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}+\frac {15 x}{(3+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}-\frac {3 \log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}-\frac {2 x \log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}\right ) \, dx-\int \log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right ) \, dx\\ &=3 x-2 \int \frac {x \log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-3 \int \frac {\log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-5 \int \frac {1}{\log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-15 \int \frac {1}{-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )} \, dx+15 \int \frac {x}{(3+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx+45 \int \frac {1}{(3+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx+125 \int \frac {1}{(25+x) \log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-\int \log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right ) \, dx\\ &=3 x-2 \int \left (\frac {\log (25+x)}{\log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}-\frac {3 \log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}\right ) \, dx-3 \int \frac {\log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-5 \int \frac {1}{\log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-15 \int \frac {1}{-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )} \, dx+15 \int \left (\frac {1}{-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )}-\frac {3}{(3+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )}\right ) \, dx+45 \int \frac {1}{(3+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx+125 \int \frac {1}{(25+x) \log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-\int \log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right ) \, dx\\ &=3 x-2 \int \frac {\log (25+x)}{\log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-3 \int \frac {\log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-5 \int \frac {1}{\log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx+6 \int \frac {\log (25+x)}{(3+x) \log \left (-\frac {1}{3} x (3+x)\right ) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx+125 \int \frac {1}{(25+x) \log (25+x) \left (-5+\log (25+x) \log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right )} \, dx-\int \log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 29, normalized size = 0.97 \begin {gather*} 3 x-x \log \left (\frac {5}{\log (25+x)}-\log \left (\log \left (-\frac {1}{3} x (3+x)\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 34, normalized size = 1.13 \begin {gather*} -x \log \left (-\frac {\log \left (x + 25\right ) \log \left (\log \left (-\frac {1}{3} \, x^{2} - x\right )\right ) - 5}{\log \left (x + 25\right )}\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.53, size = 34, normalized size = 1.13 \begin {gather*} -x \log \left (-\log \left (x + 25\right ) \log \left (\log \left (-\frac {1}{3} \, x^{2} - x\right )\right ) + 5\right ) + x \log \left (\log \left (x + 25\right )\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 2.70, size = 876, normalized size = 29.20
method | result | size |
risch | \(-x \ln \left (\ln \left (x +25\right ) \ln \left (-\ln \relax (3)+i \pi +\ln \relax (x )+\ln \left (3+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (3+x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i \left (3+x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (3+x \right )\right )-1\right )\right )-5\right )+x \ln \left (\ln \left (x +25\right )\right )+i \pi x \mathrm {csgn}\left (\frac {i \left (\ln \left (x +25\right ) \ln \left (-\ln \relax (3)+i \pi +\ln \relax (x )+\ln \left (3+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (3+x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i \left (3+x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (3+x \right )\right )-1\right )\right )-5\right )}{\ln \left (x +25\right )}\right )^{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (\ln \left (x +25\right ) \ln \left (-\ln \relax (3)+i \pi +\ln \relax (x )+\ln \left (3+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (3+x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i \left (3+x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (3+x \right )\right )-1\right )\right )-5\right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (x +25\right )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (x +25\right ) \ln \left (-\ln \relax (3)+i \pi +\ln \relax (x )+\ln \left (3+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (3+x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i \left (3+x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (3+x \right )\right )-1\right )\right )-5\right )}{\ln \left (x +25\right )}\right )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (\ln \left (x +25\right ) \ln \left (-\ln \relax (3)+i \pi +\ln \relax (x )+\ln \left (3+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (3+x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i \left (3+x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (3+x \right )\right )-1\right )\right )-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (x +25\right ) \ln \left (-\ln \relax (3)+i \pi +\ln \relax (x )+\ln \left (3+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (3+x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i \left (3+x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (3+x \right )\right )-1\right )\right )-5\right )}{\ln \left (x +25\right )}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \left (x +25\right )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (x +25\right ) \ln \left (-\ln \relax (3)+i \pi +\ln \relax (x )+\ln \left (3+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (3+x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i \left (3+x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (3+x \right )\right )-1\right )\right )-5\right )}{\ln \left (x +25\right )}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (\ln \left (x +25\right ) \ln \left (-\ln \relax (3)+i \pi +\ln \relax (x )+\ln \left (3+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (3+x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (3+x \right )\right )+\mathrm {csgn}\left (i \left (3+x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (3+x \right )\right )-1\right )\right )-5\right )}{\ln \left (x +25\right )}\right )^{3}}{2}-i \pi x +3 x\) | \(876\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 37, normalized size = 1.23 \begin {gather*} -x \log \left (-\log \left (x + 25\right ) \log \left (-\log \relax (3) + \log \relax (x) + \log \left (-x - 3\right )\right ) + 5\right ) + x \log \left (\log \left (x + 25\right )\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.62, size = 32, normalized size = 1.07 \begin {gather*} -x\,\left (\ln \left (-\frac {\ln \left (x+25\right )\,\ln \left (\ln \left (-\frac {x^2}{3}-x\right )\right )-5}{\ln \left (x+25\right )}\right )-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________