Optimal. Leaf size=28 \[ 2+e^{-x}+\frac {1}{5} \left (e^4-e^{4/x}-x\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 33, normalized size of antiderivative = 1.18, number of steps used = 5, number of rules used = 4, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 6688, 2194, 2288} \begin {gather*} -\frac {x^2}{5}-\frac {1}{5} e^{4/x} x+\frac {e^4 x}{5}+e^{-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-x} \left (-5 x+e^x \left (e^{4/x} (4-x)+e^4 x-2 x^2\right )\right )}{x} \, dx\\ &=\frac {1}{5} \int \left (e^4-5 e^{-x}+e^{4/x} \left (-1+\frac {4}{x}\right )-2 x\right ) \, dx\\ &=\frac {e^4 x}{5}-\frac {x^2}{5}+\frac {1}{5} \int e^{4/x} \left (-1+\frac {4}{x}\right ) \, dx-\int e^{-x} \, dx\\ &=e^{-x}+\frac {e^4 x}{5}-\frac {1}{5} e^{4/x} x-\frac {x^2}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 32, normalized size = 1.14 \begin {gather*} \frac {1}{5} \left (5 e^{-x}+e^4 x-e^{4/x} x-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 28, normalized size = 1.00 \begin {gather*} -\frac {1}{5} \, {\left ({\left (x^{2} - x e^{4} + x e^{\frac {4}{x}}\right )} e^{x} - 5\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 24, normalized size = 0.86 \begin {gather*} -\frac {1}{5} \, x^{2} + \frac {1}{5} \, x e^{4} - \frac {1}{5} \, x e^{\frac {4}{x}} + e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 0.89
method | result | size |
default | \(\frac {x \,{\mathrm e}^{4}}{5}-\frac {x^{2}}{5}+{\mathrm e}^{-x}-\frac {x \,{\mathrm e}^{\frac {4}{x}}}{5}\) | \(25\) |
risch | \(\frac {x \,{\mathrm e}^{4}}{5}-\frac {x^{2}}{5}+{\mathrm e}^{-x}-\frac {x \,{\mathrm e}^{\frac {4}{x}}}{5}\) | \(25\) |
norman | \(\left (1-\frac {{\mathrm e}^{x} x^{2}}{5}+\frac {x \,{\mathrm e}^{4} {\mathrm e}^{x}}{5}-\frac {{\mathrm e}^{x} {\mathrm e}^{\frac {4}{x}} x}{5}\right ) {\mathrm e}^{-x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 32, normalized size = 1.14 \begin {gather*} -\frac {1}{5} \, x^{2} + \frac {1}{5} \, x e^{4} - \frac {4}{5} \, {\rm Ei}\left (\frac {4}{x}\right ) + e^{\left (-x\right )} + \frac {4}{5} \, \Gamma \left (-1, -\frac {4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 24, normalized size = 0.86 \begin {gather*} {\mathrm {e}}^{-x}+\frac {x\,{\mathrm {e}}^4}{5}-\frac {x\,{\mathrm {e}}^{4/x}}{5}-\frac {x^2}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 24, normalized size = 0.86 \begin {gather*} - \frac {x^{2}}{5} - \frac {x e^{\frac {4}{x}}}{5} + \frac {x e^{4}}{5} + e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________