Optimal. Leaf size=21 \[ 4+e^3 \left (x-5 \left (\frac {2}{x}+e^x x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 31, normalized size of antiderivative = 1.48, number of steps used = 6, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {14, 2176, 2194} \begin {gather*} e^3 x+5 e^{x+3}-5 e^{x+3} (x+1)-\frac {10 e^3}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-5 e^{3+x} (1+x)+\frac {e^3 \left (10+x^2\right )}{x^2}\right ) \, dx\\ &=-\left (5 \int e^{3+x} (1+x) \, dx\right )+e^3 \int \frac {10+x^2}{x^2} \, dx\\ &=-5 e^{3+x} (1+x)+5 \int e^{3+x} \, dx+e^3 \int \left (1+\frac {10}{x^2}\right ) \, dx\\ &=5 e^{3+x}-\frac {10 e^3}{x}+e^3 x-5 e^{3+x} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 0.81 \begin {gather*} e^3 \left (-\frac {10}{x}+x-5 e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 24, normalized size = 1.14 \begin {gather*} -\frac {5 \, x^{2} e^{\left (x + 3\right )} - {\left (x^{2} - 10\right )} e^{3}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 24, normalized size = 1.14 \begin {gather*} \frac {x^{2} e^{3} - 5 \, x^{2} e^{\left (x + 3\right )} - 10 \, e^{3}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.95
method | result | size |
risch | \(x \,{\mathrm e}^{3}-\frac {10 \,{\mathrm e}^{3}}{x}-5 \,{\mathrm e}^{3+x} x\) | \(20\) |
norman | \(\frac {x^{2} {\mathrm e}^{3}-5 x^{2} {\mathrm e}^{3} {\mathrm e}^{x}-10 \,{\mathrm e}^{3}}{x}\) | \(25\) |
default | \(-\frac {10 \,{\mathrm e}^{3}}{x}-5 \,{\mathrm e}^{x} {\mathrm e}^{3}-5 \,{\mathrm e}^{3} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+x \,{\mathrm e}^{3}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 31, normalized size = 1.48 \begin {gather*} x e^{3} - 5 \, {\left (x e^{3} - e^{3}\right )} e^{x} - \frac {10 \, e^{3}}{x} - 5 \, e^{\left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 19, normalized size = 0.90 \begin {gather*} -\frac {10\,{\mathrm {e}}^3}{x}-x\,{\mathrm {e}}^3\,\left (5\,{\mathrm {e}}^x-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.95 \begin {gather*} - 5 x e^{3} e^{x} + x e^{3} - \frac {10 e^{3}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________