Optimal. Leaf size=25 \[ -4+\frac {4}{\log (x)}-\log \left (2+\frac {\log \left (x+5 x^2\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 7, number of rules used = 3, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {6688, 14, 6684} \begin {gather*} \log (x)-\log (2 x+\log (x (5 x+1)))+\frac {4}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {4}{\log ^2(x)}+\frac {-1-10 x+(1+5 x) \log (x (1+5 x))}{(1+5 x) (2 x+\log (x (1+5 x)))}}{x} \, dx\\ &=\int \left (\frac {-4+\log ^2(x)}{x \log ^2(x)}+\frac {-1-12 x-10 x^2}{x (1+5 x) (2 x+\log (x (1+5 x)))}\right ) \, dx\\ &=\int \frac {-4+\log ^2(x)}{x \log ^2(x)} \, dx+\int \frac {-1-12 x-10 x^2}{x (1+5 x) (2 x+\log (x (1+5 x)))} \, dx\\ &=-\log (2 x+\log (x (1+5 x)))+\operatorname {Subst}\left (\int \frac {-4+x^2}{x^2} \, dx,x,\log (x)\right )\\ &=-\log (2 x+\log (x (1+5 x)))+\operatorname {Subst}\left (\int \left (1-\frac {4}{x^2}\right ) \, dx,x,\log (x)\right )\\ &=\frac {4}{\log (x)}+\log (x)-\log (2 x+\log (x (1+5 x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 24, normalized size = 0.96 \begin {gather*} \frac {4}{\log (x)}+\log (x)-\log (2 x+\log (x (1+5 x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 30, normalized size = 1.20 \begin {gather*} -\frac {\log \left (2 \, x + \log \left (5 \, x^{2} + x\right )\right ) \log \relax (x) - \log \relax (x)^{2} - 4}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 24, normalized size = 0.96 \begin {gather*} \frac {4}{\log \relax (x)} - \log \left (2 \, x + \log \left (5 \, x + 1\right ) + \log \relax (x)\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 25, normalized size = 1.00
method | result | size |
default | \(\ln \relax (x )-\ln \left (2 x +\ln \left (5 x^{2}+x \right )\right )+\frac {4}{\ln \relax (x )}\) | \(25\) |
risch | \(\frac {\ln \relax (x )^{2}+4}{\ln \relax (x )}-\ln \left (\ln \left (\frac {1}{5}+x \right )-\frac {i \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (\frac {1}{5}+x \right )\right ) \mathrm {csgn}\left (i x \left (\frac {1}{5}+x \right )\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (\frac {1}{5}+x \right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (\frac {1}{5}+x \right )\right ) \mathrm {csgn}\left (i x \left (\frac {1}{5}+x \right )\right )^{2}+\pi \mathrm {csgn}\left (i x \left (\frac {1}{5}+x \right )\right )^{3}+4 i x +2 i \ln \relax (x )\right )}{2}\right )\) | \(106\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 24, normalized size = 0.96 \begin {gather*} \frac {4}{\log \relax (x)} - \log \left (2 \, x + \log \left (5 \, x + 1\right ) + \log \relax (x)\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.09, size = 24, normalized size = 0.96 \begin {gather*} \ln \relax (x)-\ln \left (2\,x+\ln \left (x\,\left (5\,x+1\right )\right )\right )+\frac {4}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 20, normalized size = 0.80 \begin {gather*} \log {\relax (x )} - \log {\left (2 x + \log {\left (5 x^{2} + x \right )} \right )} + \frac {4}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________