Optimal. Leaf size=25 \[ -7+\frac {\log (2 x)}{x \log \left (\frac {4+x}{2 (1+x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (4+5 x+x^2\right ) \log \left (\frac {4+x}{2+2 x}\right )+\log (2 x) \left (3 x+\left (-4-5 x-x^2\right ) \log \left (\frac {4+x}{2+2 x}\right )\right )}{\left (4 x^2+5 x^3+x^4\right ) \log ^2\left (\frac {4+x}{2+2 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4+5 x+x^2\right ) \log \left (\frac {4+x}{2+2 x}\right )+\log (2 x) \left (3 x+\left (-4-5 x-x^2\right ) \log \left (\frac {4+x}{2+2 x}\right )\right )}{x^2 \left (4+5 x+x^2\right ) \log ^2\left (\frac {4+x}{2+2 x}\right )} \, dx\\ &=\int \frac {\log (2 x) \left (\frac {3 x}{4+5 x+x^2}-\log \left (\frac {4+x}{2+2 x}\right )\right )+\log \left (\frac {4+x}{2+2 x}\right )}{x^2 \log ^2\left (\frac {4+x}{2+2 x}\right )} \, dx\\ &=\int \left (\frac {3 \log (2 x)}{x (1+x) (4+x) \log ^2\left (\frac {4+x}{2+2 x}\right )}+\frac {1-\log (2 x)}{x^2 \log \left (\frac {4+x}{2+2 x}\right )}\right ) \, dx\\ &=3 \int \frac {\log (2 x)}{x (1+x) (4+x) \log ^2\left (\frac {4+x}{2+2 x}\right )} \, dx+\int \frac {1-\log (2 x)}{x^2 \log \left (\frac {4+x}{2+2 x}\right )} \, dx\\ &=3 \int \left (\frac {\log (2 x)}{4 x \log ^2\left (\frac {4+x}{2+2 x}\right )}-\frac {\log (2 x)}{3 (1+x) \log ^2\left (\frac {4+x}{2+2 x}\right )}+\frac {\log (2 x)}{12 (4+x) \log ^2\left (\frac {4+x}{2+2 x}\right )}\right ) \, dx+\int \left (\frac {1}{x^2 \log \left (\frac {4+x}{2+2 x}\right )}-\frac {\log (2 x)}{x^2 \log \left (\frac {4+x}{2+2 x}\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {\log (2 x)}{(4+x) \log ^2\left (\frac {4+x}{2+2 x}\right )} \, dx+\frac {3}{4} \int \frac {\log (2 x)}{x \log ^2\left (\frac {4+x}{2+2 x}\right )} \, dx-\int \frac {\log (2 x)}{(1+x) \log ^2\left (\frac {4+x}{2+2 x}\right )} \, dx+\int \frac {1}{x^2 \log \left (\frac {4+x}{2+2 x}\right )} \, dx-\int \frac {\log (2 x)}{x^2 \log \left (\frac {4+x}{2+2 x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 22, normalized size = 0.88 \begin {gather*} \frac {\log (2 x)}{x \log \left (\frac {4+x}{2+2 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 21, normalized size = 0.84 \begin {gather*} \frac {\log \left (2 \, x\right )}{x \log \left (\frac {x + 4}{2 \, {\left (x + 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 27, normalized size = 1.08 \begin {gather*} -\frac {\log \relax (2) + \log \relax (x)}{x \log \relax (2) - x \log \left (x + 4\right ) + x \log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 129, normalized size = 5.16
method | result | size |
risch | \(\frac {2 i \ln \left (2 x \right )}{x \left (\pi \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (i \left (4+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (4+x \right )}{x +1}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (\frac {i \left (4+x \right )}{x +1}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (4+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (4+x \right )}{x +1}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (4+x \right )}{x +1}\right )^{3}-2 i \ln \relax (2)+2 i \ln \left (4+x \right )-2 i \ln \left (x +1\right )\right )}\) | \(129\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 27, normalized size = 1.08 \begin {gather*} -\frac {\log \relax (2) + \log \relax (x)}{x \log \relax (2) - x \log \left (x + 4\right ) + x \log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.99, size = 22, normalized size = 0.88 \begin {gather*} \frac {\ln \left (2\,x\right )}{x\,\ln \left (\frac {x+4}{2\,x+2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 15, normalized size = 0.60 \begin {gather*} \frac {\log {\left (2 x \right )}}{x \log {\left (\frac {x + 4}{2 x + 2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________