Optimal. Leaf size=17 \[ \frac {1}{\left (3 e^{1+e^x x} x+\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.43, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {6688, 12, 6686} \begin {gather*} \frac {1}{\left (3 e^{e^x x+1} x+\log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-1-3 e^{1+e^x x} x-3 e^{1+x+e^x x} x^2 (1+x)\right )}{x \left (3 e^{1+e^x x} x+\log (x)\right )^3} \, dx\\ &=2 \int \frac {-1-3 e^{1+e^x x} x-3 e^{1+x+e^x x} x^2 (1+x)}{x \left (3 e^{1+e^x x} x+\log (x)\right )^3} \, dx\\ &=\frac {1}{\left (3 e^{1+e^x x} x+\log (x)\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 17, normalized size = 1.00 \begin {gather*} \frac {1}{\left (3 e^{1+e^x x} x+\log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 32, normalized size = 1.88 \begin {gather*} \frac {1}{9 \, x^{2} e^{\left (2 \, x e^{x} + 2\right )} + 6 \, x e^{\left (x e^{x} + 1\right )} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.46, size = 32, normalized size = 1.88 \begin {gather*} \frac {1}{9 \, x^{2} e^{\left (2 \, x e^{x} + 2\right )} + 6 \, x e^{\left (x e^{x} + 1\right )} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 16, normalized size = 0.94
method | result | size |
risch | \(\frac {1}{\left (3 \,{\mathrm e}^{{\mathrm e}^{x} x +1} x +\ln \relax (x )\right )^{2}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 32, normalized size = 1.88 \begin {gather*} \frac {1}{9 \, x^{2} e^{\left (2 \, x e^{x} + 2\right )} + 6 \, x e^{\left (x e^{x} + 1\right )} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.81, size = 32, normalized size = 1.88 \begin {gather*} \frac {1}{{\ln \relax (x)}^2+9\,x^2\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^2+6\,x\,{\mathrm {e}}^{x\,{\mathrm {e}}^x}\,\mathrm {e}\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 36, normalized size = 2.12 \begin {gather*} \frac {1}{9 x^{2} e^{2 x e^{x} + 2} + 6 x e^{x e^{x} + 1} \log {\relax (x )} + \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________