Optimal. Leaf size=16 \[ e^{4 x}+4 x \left (\frac {5}{x^2}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {14, 2194} \begin {gather*} 4 x^2+e^{4 x}+\frac {20}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4 e^{4 x}+\frac {4 \left (-5+2 x^3\right )}{x^2}\right ) \, dx\\ &=4 \int e^{4 x} \, dx+4 \int \frac {-5+2 x^3}{x^2} \, dx\\ &=e^{4 x}+4 \int \left (-\frac {5}{x^2}+2 x\right ) \, dx\\ &=e^{4 x}+\frac {20}{x}+4 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 1.25 \begin {gather*} 4 \left (\frac {e^{4 x}}{4}+\frac {5}{x}+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 17, normalized size = 1.06 \begin {gather*} \frac {4 \, x^{3} + x e^{\left (4 \, x\right )} + 20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 17, normalized size = 1.06 \begin {gather*} \frac {4 \, x^{3} + x e^{\left (4 \, x\right )} + 20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 1.00
method | result | size |
default | \({\mathrm e}^{4 x}+4 x^{2}+\frac {20}{x}\) | \(16\) |
risch | \({\mathrm e}^{4 x}+4 x^{2}+\frac {20}{x}\) | \(16\) |
norman | \(\frac {20+x \,{\mathrm e}^{4 x}+4 x^{3}}{x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 15, normalized size = 0.94 \begin {gather*} 4 \, x^{2} + \frac {20}{x} + e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.57, size = 15, normalized size = 0.94 \begin {gather*} {\mathrm {e}}^{4\,x}+\frac {20}{x}+4\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.75 \begin {gather*} 4 x^{2} + e^{4 x} + \frac {20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________