Optimal. Leaf size=24 \[ e^{-4+2 x-2 x^2-\frac {4 (4+x)}{x}} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 51, normalized size of antiderivative = 2.12, number of steps used = 1, number of rules used = 1, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {2288} \begin {gather*} \frac {e^{-2 x^2+2 x-\frac {4 (x+4)}{x}-4} \left (-2 x^3+x^2+8\right )}{\frac {2 (x+4)}{x^2}-2 x-\frac {2}{x}+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{-4+2 x-2 x^2-\frac {4 (4+x)}{x}} \left (8+x^2-2 x^3\right )}{1-\frac {2}{x}-2 x+\frac {2 (4+x)}{x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 0.88 \begin {gather*} e^{-2 \left (4+\frac {8}{x}-x+x^2\right )} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 23, normalized size = 0.96 \begin {gather*} x^{2} e^{\left (-\frac {2 \, {\left (x^{3} - x^{2} + 4 \, x + 8\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 23, normalized size = 0.96 \begin {gather*} x^{2} e^{\left (-\frac {2 \, {\left (x^{3} - x^{2} + 4 \, x + 8\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 24, normalized size = 1.00
method | result | size |
risch | \(x^{2} {\mathrm e}^{-\frac {2 \left (x^{3}-x^{2}+4 x +8\right )}{x}}\) | \(24\) |
gosper | \(x^{2} {\mathrm e}^{-\frac {4 \left (4+x \right )}{x}} {\mathrm e}^{-2 x^{2}+2 x -4}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 20, normalized size = 0.83 \begin {gather*} x^{2} e^{\left (-2 \, x^{2} + 2 \, x - \frac {16}{x} - 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.71, size = 22, normalized size = 0.92 \begin {gather*} x^2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-8}\,{\mathrm {e}}^{-2\,x^2}\,{\mathrm {e}}^{-\frac {16}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.05, size = 22, normalized size = 0.92 \begin {gather*} x^{2} e^{- \frac {4 \left (x + 4\right )}{x}} e^{- 2 x^{2} + 2 x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________