Optimal. Leaf size=28 \[ 625 e^{\frac {2}{3}+2 e^{x+\left (i \pi +\log \left (-2+e^5\right )\right )^2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 2282, 2194} \begin {gather*} 625 e^{\frac {2}{3}+2 e^{x+\left (\log \left (e^5-2\right )+i \pi \right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=1250 \int \exp \left (\frac {2}{3} \left (1+3 e^{x+\left (i \pi +\log \left (-2+e^5\right )\right )^2}\right )+x+\left (i \pi +\log \left (-2+e^5\right )\right )^2\right ) \, dx\\ &=1250 \operatorname {Subst}\left (\int e^{\frac {2}{3}+2 x} \, dx,x,e^{x+\left (i \pi +\log \left (-2+e^5\right )\right )^2}\right )\\ &=625 e^{\frac {2}{3}+2 e^{x+\left (i \pi +\log \left (-2+e^5\right )\right )^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 28, normalized size = 1.00 \begin {gather*} 625 e^{\frac {2}{3}+2 e^{x+\left (i \pi +\log \left (-2+e^5\right )\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 19, normalized size = 0.68 \begin {gather*} 625 \, e^{\left (2 \, e^{\left (\log \left (-e^{5} + 2\right )^{2} + x\right )} + \frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 19, normalized size = 0.68 \begin {gather*} 625 \, e^{\left (2 \, e^{\left (\log \left (-e^{5} + 2\right )^{2} + x\right )} + \frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.71
method | result | size |
derivativedivides | \(625 \,{\mathrm e}^{2 \,{\mathrm e}^{\ln \left (2-{\mathrm e}^{5}\right )^{2}+x}+\frac {2}{3}}\) | \(20\) |
default | \(625 \,{\mathrm e}^{2 \,{\mathrm e}^{\ln \left (2-{\mathrm e}^{5}\right )^{2}+x}+\frac {2}{3}}\) | \(20\) |
norman | \(625 \,{\mathrm e}^{2 \,{\mathrm e}^{\ln \left (2-{\mathrm e}^{5}\right )^{2}+x}+\frac {2}{3}}\) | \(20\) |
risch | \(625 \,{\mathrm e}^{2 \,{\mathrm e}^{\ln \left (2-{\mathrm e}^{5}\right )^{2}+x}+\frac {2}{3}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 19, normalized size = 0.68 \begin {gather*} 625 \, e^{\left (2 \, e^{\left (\log \left (-e^{5} + 2\right )^{2} + x\right )} + \frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 19, normalized size = 0.68 \begin {gather*} 625\,{\mathrm {e}}^{2/3}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{{\ln \left (2-{\mathrm {e}}^5\right )}^2}\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 41, normalized size = 1.46 \begin {gather*} 625 e^{\frac {2}{3}} e^{\frac {2 e^{x} e^{2 i \pi \log {\left (-2 + e^{5} \right )}} e^{\log {\left (-2 + e^{5} \right )}^{2}}}{e^{\pi ^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________