Optimal. Leaf size=24 \[ x \left (-x \left (6-\frac {1}{e^5}+x\right )+\log \left (\frac {2-e}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 30, normalized size of antiderivative = 1.25, number of steps used = 4, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {12, 2295} \begin {gather*} -x^3+\frac {x^2}{e^5}-6 x^2+x \log \left (\frac {2-e}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (2 x+e^5 \left (-1-12 x-3 x^2\right )+e^5 \log \left (\frac {2-e}{x}\right )\right ) \, dx}{e^5}\\ &=\frac {x^2}{e^5}+\int \left (-1-12 x-3 x^2\right ) \, dx+\int \log \left (\frac {2-e}{x}\right ) \, dx\\ &=-6 x^2+\frac {x^2}{e^5}-x^3+x \log \left (\frac {2-e}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 33, normalized size = 1.38 \begin {gather*} -\frac {\left (-1+6 e^5\right ) x^2}{e^5}-x^3+x \log \left (\frac {2-e}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.60, size = 34, normalized size = 1.42 \begin {gather*} {\left (x e^{5} \log \left (-\frac {e - 2}{x}\right ) + x^{2} - {\left (x^{3} + 6 \, x^{2}\right )} e^{5}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.43, size = 73, normalized size = 3.04 \begin {gather*} {\left (x^{2} - {\left (x^{3} + 6 \, x^{2} + x\right )} e^{5} + \frac {{\left (\frac {x {\left (e^{2} - 4 \, e + 4\right )} \log \left (-\frac {e - 2}{x}\right )}{e - 2} + \frac {x {\left (e^{2} - 4 \, e + 4\right )}}{e - 2}\right )} e^{5}}{e - 2}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 31, normalized size = 1.29
method | result | size |
risch | \(-x^{3}-6 x^{2}+x \ln \left (\frac {2-{\mathrm e}}{x}\right )+{\mathrm e}^{-5} x^{2}\) | \(31\) |
norman | \(x \ln \left (\frac {2-{\mathrm e}}{x}\right )-x^{3}-\left (6 \,{\mathrm e}^{5}-1\right ) {\mathrm e}^{-5} x^{2}\) | \(35\) |
default | \({\mathrm e}^{-5} \left ({\mathrm e}^{5} \left (-x^{3}-6 x^{2}-x \right )+\frac {2 \,{\mathrm e}^{5} x \ln \left (\frac {2-{\mathrm e}}{x}\right )}{2-{\mathrm e}}+\frac {2 \,{\mathrm e}^{5} x}{2-{\mathrm e}}-\frac {{\mathrm e}^{5} {\mathrm e} x \ln \left (\frac {2-{\mathrm e}}{x}\right )}{2-{\mathrm e}}-\frac {{\mathrm e}^{5} {\mathrm e} x}{2-{\mathrm e}}+x^{2}\right )\) | \(105\) |
derivativedivides | \(-{\mathrm e}^{-5} \left (2-{\mathrm e}\right ) \left ({\mathrm e}^{5} \left (-\frac {x \ln \left (\frac {2-{\mathrm e}}{x}\right )}{2-{\mathrm e}}-\frac {x}{2-{\mathrm e}}\right )+\frac {{\mathrm e}^{2} {\mathrm e}^{5} x^{3}}{\left (2-{\mathrm e}\right )^{3}}-\frac {6 \,{\mathrm e} \,{\mathrm e}^{5} x^{2}}{\left (2-{\mathrm e}\right )^{2}}+\frac {{\mathrm e}^{5} x}{2-{\mathrm e}}-\frac {4 x^{3} {\mathrm e}^{5} {\mathrm e}}{\left (2-{\mathrm e}\right )^{3}}+\frac {12 x^{2} {\mathrm e}^{5}}{\left (2-{\mathrm e}\right )^{2}}+\frac {{\mathrm e} x^{2}}{\left (2-{\mathrm e}\right )^{2}}+\frac {4 x^{3} {\mathrm e}^{5}}{\left (2-{\mathrm e}\right )^{3}}-\frac {2 x^{2}}{\left (2-{\mathrm e}\right )^{2}}\right )\) | \(172\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 38, normalized size = 1.58 \begin {gather*} {\left (x^{2} - {\left (x^{3} + 6 \, x^{2} + x\right )} e^{5} + {\left (x \log \left (-\frac {e - 2}{x}\right ) + x\right )} e^{5}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.54, size = 26, normalized size = 1.08 \begin {gather*} x\,\left (\ln \left (\mathrm {e}-2\right )-6\,x+\ln \left (-\frac {1}{x}\right )+x\,{\mathrm {e}}^{-5}-x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 26, normalized size = 1.08 \begin {gather*} - x^{3} + \frac {x^{2} \left (1 - 6 e^{5}\right )}{e^{5}} + x \log {\left (\frac {2 - e}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________