Optimal. Leaf size=33 \[ \frac {\frac {1}{x}+\frac {3-x}{3 x-2 x^2}}{e^2+2 x \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 2.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-36 x+42 x^2-12 x^3+e^2 \left (-18+24 x-6 x^2\right )+\left (-72 x+90 x^2-24 x^3\right ) \log (x)}{e^4 \left (9 x^2-12 x^3+4 x^4\right )+e^2 \left (36 x^3-48 x^4+16 x^5\right ) \log (x)+\left (36 x^4-48 x^5+16 x^6\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 \left (-e^2 \left (3-4 x+x^2\right )-x \left (6-7 x+2 x^2\right )-x \left (12-15 x+4 x^2\right ) \log (x)\right )}{(3-2 x)^2 x^2 \left (e^2+2 x \log (x)\right )^2} \, dx\\ &=6 \int \frac {-e^2 \left (3-4 x+x^2\right )-x \left (6-7 x+2 x^2\right )-x \left (12-15 x+4 x^2\right ) \log (x)}{(3-2 x)^2 x^2 \left (e^2+2 x \log (x)\right )^2} \, dx\\ &=6 \int \left (\frac {\left (e^2-2 x\right ) (-2+x)}{2 x^2 (-3+2 x) \left (e^2+2 x \log (x)\right )^2}+\frac {-12+15 x-4 x^2}{2 x^2 (-3+2 x)^2 \left (e^2+2 x \log (x)\right )}\right ) \, dx\\ &=3 \int \frac {\left (e^2-2 x\right ) (-2+x)}{x^2 (-3+2 x) \left (e^2+2 x \log (x)\right )^2} \, dx+3 \int \frac {-12+15 x-4 x^2}{x^2 (-3+2 x)^2 \left (e^2+2 x \log (x)\right )} \, dx\\ &=3 \int \left (\frac {2 e^2}{3 x^2 \left (e^2+2 x \log (x)\right )^2}+\frac {-12+e^2}{9 x \left (e^2+2 x \log (x)\right )^2}-\frac {2 \left (-3+e^2\right )}{9 (-3+2 x) \left (e^2+2 x \log (x)\right )^2}\right ) \, dx+3 \int \left (-\frac {4}{3 x^2 \left (e^2+2 x \log (x)\right )}-\frac {1}{9 x \left (e^2+2 x \log (x)\right )}+\frac {2}{3 (-3+2 x)^2 \left (e^2+2 x \log (x)\right )}+\frac {2}{9 (-3+2 x) \left (e^2+2 x \log (x)\right )}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {1}{x \left (e^2+2 x \log (x)\right )} \, dx\right )+\frac {2}{3} \int \frac {1}{(-3+2 x) \left (e^2+2 x \log (x)\right )} \, dx+2 \int \frac {1}{(-3+2 x)^2 \left (e^2+2 x \log (x)\right )} \, dx-4 \int \frac {1}{x^2 \left (e^2+2 x \log (x)\right )} \, dx+\left (2 e^2\right ) \int \frac {1}{x^2 \left (e^2+2 x \log (x)\right )^2} \, dx+\frac {1}{3} \left (2 \left (3-e^2\right )\right ) \int \frac {1}{(-3+2 x) \left (e^2+2 x \log (x)\right )^2} \, dx+\frac {1}{3} \left (-12+e^2\right ) \int \frac {1}{x \left (e^2+2 x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 28, normalized size = 0.85 \begin {gather*} -\frac {3 (2-x)}{x (-3+2 x) \left (e^2+2 x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 35, normalized size = 1.06 \begin {gather*} \frac {3 \, {\left (x - 2\right )}}{{\left (2 \, x^{2} - 3 \, x\right )} e^{2} + 2 \, {\left (2 \, x^{3} - 3 \, x^{2}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 26, normalized size = 0.79
method | result | size |
risch | \(\frac {3 x -6}{x \left (2 x -3\right ) \left (2 x \ln \relax (x )+{\mathrm e}^{2}\right )}\) | \(26\) |
norman | \(\frac {3 x -6}{x \left (2 x -3\right ) \left (2 x \ln \relax (x )+{\mathrm e}^{2}\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 35, normalized size = 1.06 \begin {gather*} \frac {3 \, {\left (x - 2\right )}}{2 \, x^{2} e^{2} - 3 \, x e^{2} + 2 \, {\left (2 \, x^{3} - 3 \, x^{2}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.14, size = 25, normalized size = 0.76 \begin {gather*} \frac {3\,\left (x-2\right )}{x\,\left (2\,x-3\right )\,\left ({\mathrm {e}}^2+2\,x\,\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 32, normalized size = 0.97 \begin {gather*} \frac {3 x - 6}{2 x^{2} e^{2} - 3 x e^{2} + \left (4 x^{3} - 6 x^{2}\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________