Optimal. Leaf size=31 \[ e^{-\frac {x^2}{3}} \left (3 e^{3 \left (2 x+\frac {24}{\log (\log (4))}\right )}-x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 35, normalized size of antiderivative = 1.13, number of steps used = 7, number of rules used = 5, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {12, 6742, 2205, 2236, 2212} \begin {gather*} 3 e^{-\frac {x^2}{3}+6 x+\frac {72}{\log (\log (4))}}-e^{-\frac {x^2}{3}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2205
Rule 2212
Rule 2236
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int e^{-\frac {x^2}{3}} \left (-3+e^{\frac {72+6 x \log (\log (4))}{\log (\log (4))}} (54-6 x)+2 x^2\right ) \, dx\\ &=\frac {1}{3} \int \left (-3 e^{-\frac {x^2}{3}}-6 e^{6 x-\frac {x^2}{3}+\frac {72}{\log (\log (4))}} (-9+x)+2 e^{-\frac {x^2}{3}} x^2\right ) \, dx\\ &=\frac {2}{3} \int e^{-\frac {x^2}{3}} x^2 \, dx-2 \int e^{6 x-\frac {x^2}{3}+\frac {72}{\log (\log (4))}} (-9+x) \, dx-\int e^{-\frac {x^2}{3}} \, dx\\ &=3 e^{6 x-\frac {x^2}{3}+\frac {72}{\log (\log (4))}}-e^{-\frac {x^2}{3}} x-\frac {1}{2} \sqrt {3 \pi } \text {erf}\left (\frac {x}{\sqrt {3}}\right )+\int e^{-\frac {x^2}{3}} \, dx\\ &=3 e^{6 x-\frac {x^2}{3}+\frac {72}{\log (\log (4))}}-e^{-\frac {x^2}{3}} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 32, normalized size = 1.03 \begin {gather*} \frac {1}{3} e^{-\frac {x^2}{3}} \left (9 e^{6 x+\frac {72}{\log (\log (4))}}-3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.39, size = 37, normalized size = 1.19 \begin {gather*} -x e^{\left (-\frac {1}{3} \, x^{2}\right )} + 3 \, e^{\left (-\frac {1}{3} \, x^{2} + \frac {6 \, {\left (x \log \left (2 \, \log \relax (2)\right ) + 12\right )}}{\log \left (2 \, \log \relax (2)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 41, normalized size = 1.32 \begin {gather*} -x e^{\left (-\frac {1}{3} \, x^{2}\right )} + 3 \, e^{\left (-\frac {x^{2} \log \left (2 \, \log \relax (2)\right ) - 18 \, x \log \left (2 \, \log \relax (2)\right ) - 216}{3 \, \log \left (2 \, \log \relax (2)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 35, normalized size = 1.13
method | result | size |
norman | \(\left (-x +3 \,{\mathrm e}^{\frac {6 x \ln \left (2 \ln \relax (2)\right )+72}{\ln \left (2 \ln \relax (2)\right )}}\right ) {\mathrm e}^{-\frac {x^{2}}{3}}\) | \(35\) |
risch | \(-x \,{\mathrm e}^{-\frac {x^{2}}{3}}+3 \,{\mathrm e}^{-\frac {x^{2} \ln \relax (2)+x^{2} \ln \left (\ln \relax (2)\right )-18 x \ln \relax (2)-18 x \ln \left (\ln \relax (2)\right )-216}{3 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )}}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 110, normalized size = 3.55 \begin {gather*} 9 \, \sqrt {3} \sqrt {\pi } \operatorname {erf}\left (\frac {1}{3} \, \sqrt {3} x - 3 \, \sqrt {3}\right ) e^{\left (\frac {72}{\log \relax (2) + \log \left (\log \relax (2)\right )} + 27\right )} - i \, \sqrt {3} {\left (-\frac {9 i \, \sqrt {3} \sqrt {\frac {1}{3}} \sqrt {\pi } {\left (x - 9\right )} {\left (\operatorname {erf}\left (\sqrt {\frac {1}{3}} \sqrt {{\left (x - 9\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x - 9\right )}^{2}}} + i \, \sqrt {3} e^{\left (-\frac {1}{3} \, {\left (x - 9\right )}^{2}\right )}\right )} e^{\left (\frac {72}{\log \left (2 \, \log \relax (2)\right )} + 27\right )} - x e^{\left (-\frac {1}{3} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 50, normalized size = 1.61 \begin {gather*} 3\,{64}^{\frac {x}{\ln \left (2\,\ln \relax (2)\right )}}\,{\mathrm {e}}^{\frac {72}{\ln \left (2\,\ln \relax (2)\right )}}\,{\mathrm {e}}^{-\frac {x^2}{3}}\,{\ln \relax (2)}^{\frac {6\,x}{\ln \left (\ln \relax (4)\right )}}-x\,{\mathrm {e}}^{-\frac {x^2}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.05, size = 36, normalized size = 1.16 \begin {gather*} - x e^{- \frac {x^{2}}{3}} + 3 e^{- \frac {x^{2}}{3}} e^{\frac {6 x \log {\left (2 \log {\relax (2 )} \right )} + 72}{\log {\left (2 \log {\relax (2 )} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________