Optimal. Leaf size=26 \[ e^{4+\frac {4 e^x}{5 x}} \left (4+e^x\right ) x^2 (3+x) \]
________________________________________________________________________________________
Rubi [F] time = 1.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{5} e^{\frac {4 e^x+20 x}{5 x}} \left (120 x+60 x^2+e^{2 x} \left (-12+8 x+4 x^2\right )+e^x \left (-48+62 x+46 x^2+5 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{\frac {4 e^x+20 x}{5 x}} \left (120 x+60 x^2+e^{2 x} \left (-12+8 x+4 x^2\right )+e^x \left (-48+62 x+46 x^2+5 x^3\right )\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {4 \left (e^x+5 x\right )}{5 x}} \left (120 x+60 x^2+e^{2 x} \left (-12+8 x+4 x^2\right )+e^x \left (-48+62 x+46 x^2+5 x^3\right )\right ) \, dx\\ &=\frac {1}{5} \int \left (120 e^{\frac {4 \left (e^x+5 x\right )}{5 x}} x+60 e^{\frac {4 \left (e^x+5 x\right )}{5 x}} x^2+4 e^{2 x+\frac {4 \left (e^x+5 x\right )}{5 x}} \left (-3+2 x+x^2\right )+e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} \left (-48+62 x+46 x^2+5 x^3\right )\right ) \, dx\\ &=\frac {1}{5} \int e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} \left (-48+62 x+46 x^2+5 x^3\right ) \, dx+\frac {4}{5} \int e^{2 x+\frac {4 \left (e^x+5 x\right )}{5 x}} \left (-3+2 x+x^2\right ) \, dx+12 \int e^{\frac {4 \left (e^x+5 x\right )}{5 x}} x^2 \, dx+24 \int e^{\frac {4 \left (e^x+5 x\right )}{5 x}} x \, dx\\ &=\frac {1}{5} \int \left (-48 e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}}+62 e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} x+46 e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} x^2+5 e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} x^3\right ) \, dx+\frac {4}{5} \int \left (-3 e^{2 x+\frac {4 \left (e^x+5 x\right )}{5 x}}+2 e^{2 x+\frac {4 \left (e^x+5 x\right )}{5 x}} x+e^{2 x+\frac {4 \left (e^x+5 x\right )}{5 x}} x^2\right ) \, dx+12 \int e^{\frac {4 \left (e^x+5 x\right )}{5 x}} x^2 \, dx+24 \int e^{\frac {4 \left (e^x+5 x\right )}{5 x}} x \, dx\\ &=\frac {4}{5} \int e^{2 x+\frac {4 \left (e^x+5 x\right )}{5 x}} x^2 \, dx+\frac {8}{5} \int e^{2 x+\frac {4 \left (e^x+5 x\right )}{5 x}} x \, dx-\frac {12}{5} \int e^{2 x+\frac {4 \left (e^x+5 x\right )}{5 x}} \, dx+\frac {46}{5} \int e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} x^2 \, dx-\frac {48}{5} \int e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} \, dx+12 \int e^{\frac {4 \left (e^x+5 x\right )}{5 x}} x^2 \, dx+\frac {62}{5} \int e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} x \, dx+24 \int e^{\frac {4 \left (e^x+5 x\right )}{5 x}} x \, dx+\int e^{x+\frac {4 \left (e^x+5 x\right )}{5 x}} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.59, size = 26, normalized size = 1.00 \begin {gather*} e^{4+\frac {4 e^x}{5 x}} \left (4+e^x\right ) x^2 (3+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.51, size = 36, normalized size = 1.38 \begin {gather*} {\left (4 \, x^{3} + 12 \, x^{2} + {\left (x^{3} + 3 \, x^{2}\right )} e^{x}\right )} e^{\left (\frac {4 \, {\left (5 \, x + e^{x}\right )}}{5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{5} \, {\left (60 \, x^{2} + 4 \, {\left (x^{2} + 2 \, x - 3\right )} e^{\left (2 \, x\right )} + {\left (5 \, x^{3} + 46 \, x^{2} + 62 \, x - 48\right )} e^{x} + 120 \, x\right )} e^{\left (\frac {4 \, {\left (5 \, x + e^{x}\right )}}{5 \, x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 0.92
method | result | size |
risch | \(\left ({\mathrm e}^{x}+4\right ) x^{2} \left (3+x \right ) {\mathrm e}^{\frac {4 x +\frac {4 \,{\mathrm e}^{x}}{5}}{x}}\) | \(24\) |
norman | \({\mathrm e}^{x} x^{3} {\mathrm e}^{\frac {4 \,{\mathrm e}^{x}+20 x}{5 x}}+12 x^{2} {\mathrm e}^{\frac {4 \,{\mathrm e}^{x}+20 x}{5 x}}+4 x^{3} {\mathrm e}^{\frac {4 \,{\mathrm e}^{x}+20 x}{5 x}}+3 \,{\mathrm e}^{x} x^{2} {\mathrm e}^{\frac {4 \,{\mathrm e}^{x}+20 x}{5 x}}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 41, normalized size = 1.58 \begin {gather*} {\left (4 \, x^{3} e^{4} + 12 \, x^{2} e^{4} + {\left (x^{3} e^{4} + 3 \, x^{2} e^{4}\right )} e^{x}\right )} e^{\left (\frac {4 \, e^{x}}{5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.69, size = 21, normalized size = 0.81 \begin {gather*} x^2\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^x}{5\,x}+4}\,\left ({\mathrm {e}}^x+4\right )\,\left (x+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 37, normalized size = 1.42 \begin {gather*} \left (x^{3} e^{x} + 4 x^{3} + 3 x^{2} e^{x} + 12 x^{2}\right ) e^{\frac {4 x + \frac {4 e^{x}}{5}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________