Optimal. Leaf size=20 \[ e^{2+\frac {e^{-x}}{64 x^6 \log ^2(5)}} \]
________________________________________________________________________________________
Rubi [F] time = 0.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-x+\frac {e^{-x} \left (1+128 e^x x^6 \log ^2(5)\right )}{64 x^6 \log ^2(5)}\right ) (-6-x)}{64 x^7 \log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\exp \left (-x+\frac {e^{-x} \left (1+128 e^x x^6 \log ^2(5)\right )}{64 x^6 \log ^2(5)}\right ) (-6-x)}{x^7} \, dx}{64 \log ^2(5)}\\ &=\frac {\int \frac {e^{2-x+\frac {e^{-x}}{64 x^6 \log ^2(5)}} (-6-x)}{x^7} \, dx}{64 \log ^2(5)}\\ &=\frac {\int \left (-\frac {6 e^{2-x+\frac {e^{-x}}{64 x^6 \log ^2(5)}}}{x^7}-\frac {e^{2-x+\frac {e^{-x}}{64 x^6 \log ^2(5)}}}{x^6}\right ) \, dx}{64 \log ^2(5)}\\ &=-\frac {\int \frac {e^{2-x+\frac {e^{-x}}{64 x^6 \log ^2(5)}}}{x^6} \, dx}{64 \log ^2(5)}-\frac {3 \int \frac {e^{2-x+\frac {e^{-x}}{64 x^6 \log ^2(5)}}}{x^7} \, dx}{32 \log ^2(5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 1.00 \begin {gather*} e^{2+\frac {e^{-x}}{64 x^6 \log ^2(5)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 35, normalized size = 1.75 \begin {gather*} e^{\left (x - \frac {{\left (64 \, {\left (x^{7} - 2 \, x^{6}\right )} e^{x} \log \relax (5)^{2} - 1\right )} e^{\left (-x\right )}}{64 \, x^{6} \log \relax (5)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 16, normalized size = 0.80 \begin {gather*} e^{\left (\frac {e^{\left (-x\right )}}{64 \, x^{6} \log \relax (5)^{2}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 28, normalized size = 1.40
method | result | size |
norman | \({\mathrm e}^{\frac {\left (128 x^{6} \ln \relax (5)^{2} {\mathrm e}^{x}+1\right ) {\mathrm e}^{-x}}{64 x^{6} \ln \relax (5)^{2}}}\) | \(28\) |
risch | \({\mathrm e}^{\frac {\left (128 x^{6} \ln \relax (5)^{2} {\mathrm e}^{x}+1\right ) {\mathrm e}^{-x}}{64 x^{6} \ln \relax (5)^{2}}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 16, normalized size = 0.80 \begin {gather*} e^{\left (\frac {e^{\left (-x\right )}}{64 \, x^{6} \log \relax (5)^{2}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.93, size = 17, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-x}}{64\,x^6\,{\ln \relax (5)}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 29, normalized size = 1.45 \begin {gather*} e^{\frac {\left (2 x^{6} e^{x} \log {\relax (5 )}^{2} + \frac {1}{64}\right ) e^{- x}}{x^{6} \log {\relax (5 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________