Optimal. Leaf size=38 \[ x+5 \left (1+e^x-\frac {-1+\frac {-e^4+e^x}{x}-x^2-\log (2)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 34, normalized size of antiderivative = 0.89, number of steps used = 13, number of rules used = 6, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {6, 14, 2199, 2194, 2177, 2178} \begin {gather*} -\frac {5 e^x}{x^2}+\frac {5 e^4}{x^2}+6 x+5 e^x+\frac {5 (1+\log (2))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10 e^4+6 x^3+e^x \left (10-5 x+5 x^3\right )+x (-5-5 \log (2))}{x^3} \, dx\\ &=\int \left (\frac {5 e^x \left (2-x+x^3\right )}{x^3}+\frac {-10 e^4+6 x^3-5 x (1+\log (2))}{x^3}\right ) \, dx\\ &=5 \int \frac {e^x \left (2-x+x^3\right )}{x^3} \, dx+\int \frac {-10 e^4+6 x^3-5 x (1+\log (2))}{x^3} \, dx\\ &=5 \int \left (e^x+\frac {2 e^x}{x^3}-\frac {e^x}{x^2}\right ) \, dx+\int \left (6-\frac {10 e^4}{x^3}-\frac {5 (1+\log (2))}{x^2}\right ) \, dx\\ &=\frac {5 e^4}{x^2}+6 x+\frac {5 (1+\log (2))}{x}+5 \int e^x \, dx-5 \int \frac {e^x}{x^2} \, dx+10 \int \frac {e^x}{x^3} \, dx\\ &=5 e^x+\frac {5 e^4}{x^2}-\frac {5 e^x}{x^2}+\frac {5 e^x}{x}+6 x+\frac {5 (1+\log (2))}{x}+5 \int \frac {e^x}{x^2} \, dx-5 \int \frac {e^x}{x} \, dx\\ &=5 e^x+\frac {5 e^4}{x^2}-\frac {5 e^x}{x^2}+6 x-5 \text {Ei}(x)+\frac {5 (1+\log (2))}{x}+5 \int \frac {e^x}{x} \, dx\\ &=5 e^x+\frac {5 e^4}{x^2}-\frac {5 e^x}{x^2}+6 x+\frac {5 (1+\log (2))}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 31, normalized size = 0.82 \begin {gather*} \frac {5 e^4+5 e^x \left (-1+x^2\right )+x \left (5+6 x^2+\log (32)\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 31, normalized size = 0.82 \begin {gather*} \frac {6 \, x^{3} + 5 \, {\left (x^{2} - 1\right )} e^{x} + 5 \, x \log \relax (2) + 5 \, x + 5 \, e^{4}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 33, normalized size = 0.87 \begin {gather*} \frac {6 \, x^{3} + 5 \, x^{2} e^{x} + 5 \, x \log \relax (2) + 5 \, x + 5 \, e^{4} - 5 \, e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 0.89
method | result | size |
norman | \(\frac {\left (5 \ln \relax (2)+5\right ) x +6 x^{3}+5 \,{\mathrm e}^{x} x^{2}+5 \,{\mathrm e}^{4}-5 \,{\mathrm e}^{x}}{x^{2}}\) | \(34\) |
risch | \(6 x +\frac {\left (5 \ln \relax (2)+5\right ) x +5 \,{\mathrm e}^{4}}{x^{2}}+\frac {5 \left (x^{2}-1\right ) {\mathrm e}^{x}}{x^{2}}\) | \(34\) |
default | \(6 x +\frac {5}{x}+\frac {5 \,{\mathrm e}^{4}}{x^{2}}-\frac {5 \,{\mathrm e}^{x}}{x^{2}}+\frac {5 \ln \relax (2)}{x}+5 \,{\mathrm e}^{x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 41, normalized size = 1.08 \begin {gather*} 6 \, x + \frac {5 \, \log \relax (2)}{x} + \frac {5}{x} + \frac {5 \, e^{4}}{x^{2}} + 5 \, e^{x} - 5 \, \Gamma \left (-1, -x\right ) - 10 \, \Gamma \left (-2, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.68, size = 27, normalized size = 0.71 \begin {gather*} 6\,x+5\,{\mathrm {e}}^x+\frac {5\,{\mathrm {e}}^4-5\,{\mathrm {e}}^x+x\,\left (\ln \left (32\right )+5\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 32, normalized size = 0.84 \begin {gather*} 6 x + \frac {\left (5 x^{2} - 5\right ) e^{x}}{x^{2}} + \frac {x \left (5 \log {\relax (2 )} + 5\right ) + 5 e^{4}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________