Optimal. Leaf size=31 \[ 16+\frac {4}{1+\frac {-x+\frac {x}{-5+e^x (5+2 x)}}{x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 3.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-120+e^{2 x} \left (-100-80 x-16 x^2\right )+e^x \left (220+116 x+8 x^2\right )}{36-60 x+25 x^2+e^x \left (-60+86 x-6 x^2-20 x^3\right )+e^{2 x} \left (25-30 x-11 x^2+12 x^3+4 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (-30-e^{2 x} (5+2 x)^2+e^x \left (55+29 x+2 x^2\right )\right )}{\left (6-5 x+e^x \left (-5+3 x+2 x^2\right )\right )^2} \, dx\\ &=4 \int \frac {-30-e^{2 x} (5+2 x)^2+e^x \left (55+29 x+2 x^2\right )}{\left (6-5 x+e^x \left (-5+3 x+2 x^2\right )\right )^2} \, dx\\ &=4 \int \left (-\frac {1}{(-1+x)^2}+\frac {5+7 x^2+2 x^3}{(-1+x)^2 (5+2 x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )}+\frac {x \left (37-67 x+13 x^2+10 x^3\right )}{(-1+x)^2 (5+2 x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2}\right ) \, dx\\ &=-\frac {4}{1-x}+4 \int \frac {5+7 x^2+2 x^3}{(-1+x)^2 (5+2 x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )} \, dx+4 \int \frac {x \left (37-67 x+13 x^2+10 x^3\right )}{(-1+x)^2 (5+2 x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2} \, dx\\ &=-\frac {4}{1-x}+4 \int \left (\frac {4}{\left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2}-\frac {1}{(-1+x)^2 \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2}-\frac {16}{7 (-1+x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2}+\frac {5 x}{\left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2}-\frac {185}{7 (5+2 x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2}\right ) \, dx+4 \int \left (\frac {1}{6-5 e^x-5 x+3 e^x x+2 e^x x^2}+\frac {2}{(-1+x)^2 \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )}+\frac {16}{7 (-1+x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )}+\frac {10}{7 (5+2 x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )}\right ) \, dx\\ &=-\frac {4}{1-x}-4 \int \frac {1}{(-1+x)^2 \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2} \, dx+4 \int \frac {1}{6-5 e^x-5 x+3 e^x x+2 e^x x^2} \, dx+\frac {40}{7} \int \frac {1}{(5+2 x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )} \, dx+8 \int \frac {1}{(-1+x)^2 \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )} \, dx-\frac {64}{7} \int \frac {1}{(-1+x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2} \, dx+\frac {64}{7} \int \frac {1}{(-1+x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )} \, dx+16 \int \frac {1}{\left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2} \, dx+20 \int \frac {x}{\left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2} \, dx-\frac {740}{7} \int \frac {1}{(5+2 x) \left (6-5 e^x-5 x+3 e^x x+2 e^x x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.57, size = 35, normalized size = 1.13 \begin {gather*} -\frac {4 \left (6-e^x (5+2 x)\right )}{6-5 x+e^x \left (-5+3 x+2 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 32, normalized size = 1.03 \begin {gather*} \frac {4 \, {\left ({\left (2 \, x + 5\right )} e^{x} - 6\right )}}{{\left (2 \, x^{2} + 3 \, x - 5\right )} e^{x} - 5 \, x + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 36, normalized size = 1.16 \begin {gather*} \frac {4 \, {\left (2 \, x e^{x} + 5 \, e^{x} - 6\right )}}{2 \, x^{2} e^{x} + 3 \, x e^{x} - 5 \, x - 5 \, e^{x} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 36, normalized size = 1.16
method | result | size |
norman | \(\frac {20 \,{\mathrm e}^{x}+8 \,{\mathrm e}^{x} x -24}{2 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x} x -5 \,{\mathrm e}^{x}-5 x +6}\) | \(36\) |
risch | \(\frac {4}{x -1}-\frac {4 x}{\left (x -1\right ) \left (2 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x} x -5 \,{\mathrm e}^{x}-5 x +6\right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 32, normalized size = 1.03 \begin {gather*} \frac {4 \, {\left ({\left (2 \, x + 5\right )} e^{x} - 6\right )}}{{\left (2 \, x^{2} + 3 \, x - 5\right )} e^{x} - 5 \, x + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.48, size = 36, normalized size = 1.16 \begin {gather*} \frac {4\,\left (5\,{\mathrm {e}}^x+2\,x\,{\mathrm {e}}^x-6\right )}{2\,x^2\,{\mathrm {e}}^x-5\,{\mathrm {e}}^x-5\,x+3\,x\,{\mathrm {e}}^x+6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 34, normalized size = 1.10 \begin {gather*} - \frac {4 x}{- 5 x^{2} + 11 x + \left (2 x^{3} + x^{2} - 8 x + 5\right ) e^{x} - 6} + \frac {4}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________