Optimal. Leaf size=27 \[ \frac {1}{25} x^2 \left (5+\left (2 x-e^{2 x} x^2+\log (2)\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.46, antiderivative size = 68, normalized size of antiderivative = 2.52, number of steps used = 43, number of rules used = 6, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {6, 12, 1593, 2196, 2176, 2194} \begin {gather*} \frac {1}{25} e^{4 x} x^6-\frac {4}{25} e^{2 x} x^5+\frac {4 x^4}{25}-\frac {2}{25} e^{2 x} x^4 \log (2)+\frac {4}{25} x^3 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{25} \left (16 x^3+e^{4 x} \left (6 x^5+4 x^6\right )+12 x^2 \log (2)+e^{2 x} \left (-20 x^4-8 x^5+\left (-8 x^3-4 x^4\right ) \log (2)\right )+x \left (10+2 \log ^2(2)\right )\right ) \, dx\\ &=\frac {1}{25} \int \left (16 x^3+e^{4 x} \left (6 x^5+4 x^6\right )+12 x^2 \log (2)+e^{2 x} \left (-20 x^4-8 x^5+\left (-8 x^3-4 x^4\right ) \log (2)\right )+x \left (10+2 \log ^2(2)\right )\right ) \, dx\\ &=\frac {4 x^4}{25}+\frac {4}{25} x^3 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )+\frac {1}{25} \int e^{4 x} \left (6 x^5+4 x^6\right ) \, dx+\frac {1}{25} \int e^{2 x} \left (-20 x^4-8 x^5+\left (-8 x^3-4 x^4\right ) \log (2)\right ) \, dx\\ &=\frac {4 x^4}{25}+\frac {4}{25} x^3 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )+\frac {1}{25} \int e^{4 x} x^5 (6+4 x) \, dx+\frac {1}{25} \int \left (-20 e^{2 x} x^4-8 e^{2 x} x^5-4 e^{2 x} x^3 (2+x) \log (2)\right ) \, dx\\ &=\frac {4 x^4}{25}+\frac {4}{25} x^3 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )+\frac {1}{25} \int \left (6 e^{4 x} x^5+4 e^{4 x} x^6\right ) \, dx-\frac {8}{25} \int e^{2 x} x^5 \, dx-\frac {4}{5} \int e^{2 x} x^4 \, dx-\frac {1}{25} (4 \log (2)) \int e^{2 x} x^3 (2+x) \, dx\\ &=\frac {4 x^4}{25}-\frac {2}{5} e^{2 x} x^4-\frac {4}{25} e^{2 x} x^5+\frac {4}{25} x^3 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )+\frac {4}{25} \int e^{4 x} x^6 \, dx+\frac {6}{25} \int e^{4 x} x^5 \, dx+\frac {4}{5} \int e^{2 x} x^4 \, dx+\frac {8}{5} \int e^{2 x} x^3 \, dx-\frac {1}{25} (4 \log (2)) \int \left (2 e^{2 x} x^3+e^{2 x} x^4\right ) \, dx\\ &=\frac {4}{5} e^{2 x} x^3+\frac {4 x^4}{25}-\frac {4}{25} e^{2 x} x^5+\frac {3}{50} e^{4 x} x^5+\frac {1}{25} e^{4 x} x^6+\frac {4}{25} x^3 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )-\frac {6}{25} \int e^{4 x} x^5 \, dx-\frac {3}{10} \int e^{4 x} x^4 \, dx-\frac {8}{5} \int e^{2 x} x^3 \, dx-\frac {12}{5} \int e^{2 x} x^2 \, dx-\frac {1}{25} (4 \log (2)) \int e^{2 x} x^4 \, dx-\frac {1}{25} (8 \log (2)) \int e^{2 x} x^3 \, dx\\ &=-\frac {6}{5} e^{2 x} x^2+\frac {4 x^4}{25}-\frac {3}{40} e^{4 x} x^4-\frac {4}{25} e^{2 x} x^5+\frac {1}{25} e^{4 x} x^6+\frac {4}{25} x^3 \log (2)-\frac {4}{25} e^{2 x} x^3 \log (2)-\frac {2}{25} e^{2 x} x^4 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )+\frac {3}{10} \int e^{4 x} x^3 \, dx+\frac {3}{10} \int e^{4 x} x^4 \, dx+\frac {12}{5} \int e^{2 x} x \, dx+\frac {12}{5} \int e^{2 x} x^2 \, dx+\frac {1}{25} (8 \log (2)) \int e^{2 x} x^3 \, dx+\frac {1}{25} (12 \log (2)) \int e^{2 x} x^2 \, dx\\ &=\frac {6}{5} e^{2 x} x+\frac {3}{40} e^{4 x} x^3+\frac {4 x^4}{25}-\frac {4}{25} e^{2 x} x^5+\frac {1}{25} e^{4 x} x^6+\frac {6}{25} e^{2 x} x^2 \log (2)+\frac {4}{25} x^3 \log (2)-\frac {2}{25} e^{2 x} x^4 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )-\frac {9}{40} \int e^{4 x} x^2 \, dx-\frac {3}{10} \int e^{4 x} x^3 \, dx-\frac {6}{5} \int e^{2 x} \, dx-\frac {12}{5} \int e^{2 x} x \, dx-\frac {1}{25} (12 \log (2)) \int e^{2 x} x \, dx-\frac {1}{25} (12 \log (2)) \int e^{2 x} x^2 \, dx\\ &=-\frac {3 e^{2 x}}{5}-\frac {9}{160} e^{4 x} x^2+\frac {4 x^4}{25}-\frac {4}{25} e^{2 x} x^5+\frac {1}{25} e^{4 x} x^6-\frac {6}{25} e^{2 x} x \log (2)+\frac {4}{25} x^3 \log (2)-\frac {2}{25} e^{2 x} x^4 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )+\frac {9}{80} \int e^{4 x} x \, dx+\frac {9}{40} \int e^{4 x} x^2 \, dx+\frac {6}{5} \int e^{2 x} \, dx+\frac {1}{25} (6 \log (2)) \int e^{2 x} \, dx+\frac {1}{25} (12 \log (2)) \int e^{2 x} x \, dx\\ &=\frac {9}{320} e^{4 x} x+\frac {4 x^4}{25}-\frac {4}{25} e^{2 x} x^5+\frac {1}{25} e^{4 x} x^6+\frac {3}{25} e^{2 x} \log (2)+\frac {4}{25} x^3 \log (2)-\frac {2}{25} e^{2 x} x^4 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )-\frac {9}{320} \int e^{4 x} \, dx-\frac {9}{80} \int e^{4 x} x \, dx-\frac {1}{25} (6 \log (2)) \int e^{2 x} \, dx\\ &=-\frac {9 e^{4 x}}{1280}+\frac {4 x^4}{25}-\frac {4}{25} e^{2 x} x^5+\frac {1}{25} e^{4 x} x^6+\frac {4}{25} x^3 \log (2)-\frac {2}{25} e^{2 x} x^4 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )+\frac {9}{320} \int e^{4 x} \, dx\\ &=\frac {4 x^4}{25}-\frac {4}{25} e^{2 x} x^5+\frac {1}{25} e^{4 x} x^6+\frac {4}{25} x^3 \log (2)-\frac {2}{25} e^{2 x} x^4 \log (2)+\frac {1}{25} x^2 \left (5+\log ^2(2)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 47, normalized size = 1.74 \begin {gather*} \frac {1}{25} x^2 \left (5+4 x^2+e^{4 x} x^4+\log ^2(2)-2 e^{2 x} x^2 (2 x+\log (2))+x \log (16)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 54, normalized size = 2.00 \begin {gather*} \frac {1}{25} \, x^{6} e^{\left (4 \, x\right )} + \frac {4}{25} \, x^{4} + \frac {4}{25} \, x^{3} \log \relax (2) + \frac {1}{25} \, x^{2} \log \relax (2)^{2} + \frac {1}{5} \, x^{2} - \frac {2}{25} \, {\left (2 \, x^{5} + x^{4} \log \relax (2)\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 54, normalized size = 2.00 \begin {gather*} \frac {1}{25} \, x^{6} e^{\left (4 \, x\right )} + \frac {4}{25} \, x^{4} + \frac {4}{25} \, x^{3} \log \relax (2) + \frac {1}{25} \, x^{2} \log \relax (2)^{2} + \frac {1}{5} \, x^{2} - \frac {2}{25} \, {\left (2 \, x^{5} + x^{4} \log \relax (2)\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 56, normalized size = 2.07
method | result | size |
risch | \(\frac {x^{6} {\mathrm e}^{4 x}}{25}+\frac {\left (-2 x^{4} \ln \relax (2)-4 x^{5}\right ) {\mathrm e}^{2 x}}{25}+\frac {x^{2} \ln \relax (2)^{2}}{25}+\frac {4 x^{3} \ln \relax (2)}{25}+\frac {4 x^{4}}{25}+\frac {x^{2}}{5}\) | \(56\) |
default | \(\frac {x^{2}}{5}+\frac {4 x^{4}}{25}+\frac {x^{2} \ln \relax (2)^{2}}{25}+\frac {4 x^{3} \ln \relax (2)}{25}-\frac {4 x^{5} {\mathrm e}^{2 x}}{25}-\frac {2 \,{\mathrm e}^{2 x} \ln \relax (2) x^{4}}{25}+\frac {x^{6} {\mathrm e}^{4 x}}{25}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 54, normalized size = 2.00 \begin {gather*} \frac {1}{25} \, x^{6} e^{\left (4 \, x\right )} + \frac {4}{25} \, x^{4} + \frac {4}{25} \, x^{3} \log \relax (2) + \frac {1}{25} \, x^{2} \log \relax (2)^{2} + \frac {1}{5} \, x^{2} - \frac {2}{25} \, {\left (2 \, x^{5} + x^{4} \log \relax (2)\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.41, size = 54, normalized size = 2.00 \begin {gather*} \frac {x^6\,{\mathrm {e}}^{4\,x}}{25}-\frac {4\,x^5\,{\mathrm {e}}^{2\,x}}{25}+\frac {x^3\,\ln \left (16\right )}{25}+x^2\,\left (\frac {{\ln \relax (2)}^2}{25}+\frac {1}{5}\right )+\frac {4\,x^4}{25}-\frac {x^4\,{\mathrm {e}}^{2\,x}\,\ln \relax (4)}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 61, normalized size = 2.26 \begin {gather*} \frac {x^{6} e^{4 x}}{25} + \frac {4 x^{4}}{25} + \frac {4 x^{3} \log {\relax (2 )}}{25} + x^{2} \left (\frac {\log {\relax (2 )}^{2}}{25} + \frac {1}{5}\right ) + \frac {\left (- 100 x^{5} - 50 x^{4} \log {\relax (2 )}\right ) e^{2 x}}{625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________