3.40 \(\int \frac {e^x x}{1-e^{2 x}} \, dx\)

Optimal. Leaf size=27 \[ \frac {\text {Li}_2\left (-e^x\right )}{2}-\frac {\text {Li}_2\left (e^x\right )}{2}+x \tanh ^{-1}\left (e^x\right ) \]

[Out]

x*arctanh(exp(x))+1/2*polylog(2,-exp(x))-1/2*polylog(2,exp(x))

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {2249, 206, 2245, 2282, 5912} \[ \frac {1}{2} \text {PolyLog}\left (2,-e^x\right )-\frac {1}{2} \text {PolyLog}\left (2,e^x\right )+x \tanh ^{-1}\left (e^x\right ) \]

Antiderivative was successfully verified.

[In]

Int[(E^x*x)/(1 - E^(2*x)),x]

[Out]

x*ArcTanh[E^x] + PolyLog[2, -E^x]/2 - PolyLog[2, E^x]/2

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2245

Int[(F_)^((e_.)*((c_.) + (d_.)*(x_)))*((a_.) + (b_.)*(F_)^(v_))^(p_)*(x_)^(m_.), x_Symbol] :> With[{u = IntHid
e[F^(e*(c + d*x))*(a + b*F^v)^p, x]}, Dist[x^m, u, x] - Dist[m, Int[x^(m - 1)*u, x], x]] /; FreeQ[{F, a, b, c,
 d, e}, x] && EqQ[v, 2*e*(c + d*x)] && GtQ[m, 0] && ILtQ[p, 0]

Rule 2249

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Wit
h[{m = FullSimplify[(d*e*Log[F])/(g*h*Log[G])]}, Dist[Denominator[m]/(g*h*Log[G]), Subst[Int[x^(Denominator[m]
 - 1)*(a + b*F^(c*e - (d*e*f)/g)*x^Numerator[m])^p, x], x, G^((h*(f + g*x))/Denominator[m])], x] /; LtQ[m, -1]
 || GtQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 5912

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (-Simp[(b*PolyLog[2, -(c*x)])/2
, x] + Simp[(b*PolyLog[2, c*x])/2, x]) /; FreeQ[{a, b, c}, x]

Rubi steps

\begin {align*} \int \frac {e^x x}{1-e^{2 x}} \, dx &=x \tanh ^{-1}\left (e^x\right )-\int \tanh ^{-1}\left (e^x\right ) \, dx\\ &=x \tanh ^{-1}\left (e^x\right )-\operatorname {Subst}\left (\int \frac {\tanh ^{-1}(x)}{x} \, dx,x,e^x\right )\\ &=x \tanh ^{-1}\left (e^x\right )+\frac {\text {Li}_2\left (-e^x\right )}{2}-\frac {\text {Li}_2\left (e^x\right )}{2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 45, normalized size = 1.67 \[ \frac {\text {Li}_2\left (-e^x\right )}{2}-\frac {\text {Li}_2\left (e^x\right )}{2}-\frac {1}{2} x \log \left (1-e^x\right )+\frac {1}{2} x \log \left (e^x+1\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(E^x*x)/(1 - E^(2*x)),x]

[Out]

-1/2*(x*Log[1 - E^x]) + (x*Log[1 + E^x])/2 + PolyLog[2, -E^x]/2 - PolyLog[2, E^x]/2

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 31, normalized size = 1.15 \[ \frac {1}{2} \, x \log \left (e^{x} + 1\right ) - \frac {1}{2} \, x \log \left (-e^{x} + 1\right ) + \frac {1}{2} \, {\rm Li}_2\left (-e^{x}\right ) - \frac {1}{2} \, {\rm Li}_2\left (e^{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*x/(1-exp(2*x)),x, algorithm="fricas")

[Out]

1/2*x*log(e^x + 1) - 1/2*x*log(-e^x + 1) + 1/2*dilog(-e^x) - 1/2*dilog(e^x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {x e^{x}}{e^{\left (2 \, x\right )} - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*x/(1-exp(2*x)),x, algorithm="giac")

[Out]

integrate(-x*e^x/(e^(2*x) - 1), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 34, normalized size = 1.26 \[ -\frac {x \ln \left (-{\mathrm e}^{x}+1\right )}{2}+\frac {x \ln \left ({\mathrm e}^{x}+1\right )}{2}+\frac {\polylog \left (2, -{\mathrm e}^{x}\right )}{2}-\frac {\polylog \left (2, {\mathrm e}^{x}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x)*x/(1-exp(2*x)),x)

[Out]

1/2*x*ln(1+exp(x))+1/2*polylog(2,-exp(x))-1/2*x*ln(1-exp(x))-1/2*polylog(2,exp(x))

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 31, normalized size = 1.15 \[ \frac {1}{2} \, x \log \left (e^{x} + 1\right ) - \frac {1}{2} \, x \log \left (-e^{x} + 1\right ) + \frac {1}{2} \, {\rm Li}_2\left (-e^{x}\right ) - \frac {1}{2} \, {\rm Li}_2\left (e^{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*x/(1-exp(2*x)),x, algorithm="maxima")

[Out]

1/2*x*log(e^x + 1) - 1/2*x*log(-e^x + 1) + 1/2*dilog(-e^x) - 1/2*dilog(e^x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \[ -\int \frac {x\,{\mathrm {e}}^x}{{\mathrm {e}}^{2\,x}-1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x*exp(x))/(exp(2*x) - 1),x)

[Out]

-int((x*exp(x))/(exp(2*x) - 1), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {x e^{x}}{e^{2 x} - 1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*x/(1-exp(2*x)),x)

[Out]

-Integral(x*exp(x)/(exp(2*x) - 1), x)

________________________________________________________________________________________