3.402 \(\int \cos (c+d x) (a+b \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=22 \[ \frac {(a+b \sin (c+d x))^4}{4 b d} \]

[Out]

1/4*(a+b*sin(d*x+c))^4/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2668, 32} \[ \frac {(a+b \sin (c+d x))^4}{4 b d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + b*Sin[c + d*x])^3,x]

[Out]

(a + b*Sin[c + d*x])^4/(4*b*d)

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \cos (c+d x) (a+b \sin (c+d x))^3 \, dx &=\frac {\operatorname {Subst}\left (\int (a+x)^3 \, dx,x,b \sin (c+d x)\right )}{b d}\\ &=\frac {(a+b \sin (c+d x))^4}{4 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.06, size = 57, normalized size = 2.59 \[ \frac {\sin (c+d x) \left (4 a^3+6 a^2 b \sin (c+d x)+4 a b^2 \sin ^2(c+d x)+b^3 \sin ^3(c+d x)\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + b*Sin[c + d*x])^3,x]

[Out]

(Sin[c + d*x]*(4*a^3 + 6*a^2*b*Sin[c + d*x] + 4*a*b^2*Sin[c + d*x]^2 + b^3*Sin[c + d*x]^3))/(4*d)

________________________________________________________________________________________

fricas [B]  time = 0.43, size = 71, normalized size = 3.23 \[ \frac {b^{3} \cos \left (d x + c\right )^{4} - 2 \, {\left (3 \, a^{2} b + b^{3}\right )} \cos \left (d x + c\right )^{2} - 4 \, {\left (a b^{2} \cos \left (d x + c\right )^{2} - a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/4*(b^3*cos(d*x + c)^4 - 2*(3*a^2*b + b^3)*cos(d*x + c)^2 - 4*(a*b^2*cos(d*x + c)^2 - a^3 - a*b^2)*sin(d*x +
c))/d

________________________________________________________________________________________

giac [A]  time = 0.47, size = 20, normalized size = 0.91 \[ \frac {{\left (b \sin \left (d x + c\right ) + a\right )}^{4}}{4 \, b d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/4*(b*sin(d*x + c) + a)^4/(b*d)

________________________________________________________________________________________

maple [A]  time = 0.10, size = 21, normalized size = 0.95 \[ \frac {\left (a +b \sin \left (d x +c \right )\right )^{4}}{4 b d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*sin(d*x+c))^3,x)

[Out]

1/4*(a+b*sin(d*x+c))^4/b/d

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 20, normalized size = 0.91 \[ \frac {{\left (b \sin \left (d x + c\right ) + a\right )}^{4}}{4 \, b d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/4*(b*sin(d*x + c) + a)^4/(b*d)

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 55, normalized size = 2.50 \[ \frac {a^3\,\sin \left (c+d\,x\right )+\frac {3\,a^2\,b\,{\sin \left (c+d\,x\right )}^2}{2}+a\,b^2\,{\sin \left (c+d\,x\right )}^3+\frac {b^3\,{\sin \left (c+d\,x\right )}^4}{4}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(a + b*sin(c + d*x))^3,x)

[Out]

(a^3*sin(c + d*x) + (b^3*sin(c + d*x)^4)/4 + (3*a^2*b*sin(c + d*x)^2)/2 + a*b^2*sin(c + d*x)^3)/d

________________________________________________________________________________________

sympy [A]  time = 1.27, size = 73, normalized size = 3.32 \[ \begin {cases} \frac {a^{3} \sin {\left (c + d x \right )}}{d} + \frac {3 a^{2} b \sin ^{2}{\left (c + d x \right )}}{2 d} + \frac {a b^{2} \sin ^{3}{\left (c + d x \right )}}{d} + \frac {b^{3} \sin ^{4}{\left (c + d x \right )}}{4 d} & \text {for}\: d \neq 0 \\x \left (a + b \sin {\relax (c )}\right )^{3} \cos {\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sin(d*x+c))**3,x)

[Out]

Piecewise((a**3*sin(c + d*x)/d + 3*a**2*b*sin(c + d*x)**2/(2*d) + a*b**2*sin(c + d*x)**3/d + b**3*sin(c + d*x)
**4/(4*d), Ne(d, 0)), (x*(a + b*sin(c))**3*cos(c), True))

________________________________________________________________________________________