3.403 \(\int \sec (c+d x) (a+b \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=80 \[ -\frac {3 a b^2 \sin (c+d x)}{d}+\frac {(a-b)^3 \log (\sin (c+d x)+1)}{2 d}-\frac {(a+b)^3 \log (1-\sin (c+d x))}{2 d}-\frac {b^3 \sin ^2(c+d x)}{2 d} \]

[Out]

-1/2*(a+b)^3*ln(1-sin(d*x+c))/d+1/2*(a-b)^3*ln(1+sin(d*x+c))/d-3*a*b^2*sin(d*x+c)/d-1/2*b^3*sin(d*x+c)^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2668, 702, 633, 31} \[ -\frac {3 a b^2 \sin (c+d x)}{d}+\frac {(a-b)^3 \log (\sin (c+d x)+1)}{2 d}-\frac {(a+b)^3 \log (1-\sin (c+d x))}{2 d}-\frac {b^3 \sin ^2(c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + b*Sin[c + d*x])^3,x]

[Out]

-((a + b)^3*Log[1 - Sin[c + d*x]])/(2*d) + ((a - b)^3*Log[1 + Sin[c + d*x]])/(2*d) - (3*a*b^2*Sin[c + d*x])/d
- (b^3*Sin[c + d*x]^2)/(2*d)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 633

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Rt[-(a*c), 2]}, Dist[e/2 + (c*d)/(2*q),
Int[1/(-q + c*x), x], x] + Dist[e/2 - (c*d)/(2*q), Int[1/(q + c*x), x], x]] /; FreeQ[{a, c, d, e}, x] && NiceS
qrtQ[-(a*c)]

Rule 702

Int[((d_) + (e_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[(d + e*x)^m, a + c*x^2,
x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[m, 1] && (NeQ[d, 0] || GtQ[m, 2])

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \sec (c+d x) (a+b \sin (c+d x))^3 \, dx &=\frac {b \operatorname {Subst}\left (\int \frac {(a+x)^3}{b^2-x^2} \, dx,x,b \sin (c+d x)\right )}{d}\\ &=\frac {b \operatorname {Subst}\left (\int \left (-3 a-x+\frac {a^3+3 a b^2+\left (3 a^2+b^2\right ) x}{b^2-x^2}\right ) \, dx,x,b \sin (c+d x)\right )}{d}\\ &=-\frac {3 a b^2 \sin (c+d x)}{d}-\frac {b^3 \sin ^2(c+d x)}{2 d}+\frac {b \operatorname {Subst}\left (\int \frac {a^3+3 a b^2+\left (3 a^2+b^2\right ) x}{b^2-x^2} \, dx,x,b \sin (c+d x)\right )}{d}\\ &=-\frac {3 a b^2 \sin (c+d x)}{d}-\frac {b^3 \sin ^2(c+d x)}{2 d}-\frac {(a-b)^3 \operatorname {Subst}\left (\int \frac {1}{-b-x} \, dx,x,b \sin (c+d x)\right )}{2 d}+\frac {(a+b)^3 \operatorname {Subst}\left (\int \frac {1}{b-x} \, dx,x,b \sin (c+d x)\right )}{2 d}\\ &=-\frac {(a+b)^3 \log (1-\sin (c+d x))}{2 d}+\frac {(a-b)^3 \log (1+\sin (c+d x))}{2 d}-\frac {3 a b^2 \sin (c+d x)}{d}-\frac {b^3 \sin ^2(c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 67, normalized size = 0.84 \[ -\frac {6 a b^2 \sin (c+d x)+(a-b)^3 (-\log (\sin (c+d x)+1))+(a+b)^3 \log (1-\sin (c+d x))+b^3 \sin ^2(c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(a + b*Sin[c + d*x])^3,x]

[Out]

-1/2*((a + b)^3*Log[1 - Sin[c + d*x]] - (a - b)^3*Log[1 + Sin[c + d*x]] + 6*a*b^2*Sin[c + d*x] + b^3*Sin[c + d
*x]^2)/d

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 93, normalized size = 1.16 \[ \frac {b^{3} \cos \left (d x + c\right )^{2} - 6 \, a b^{2} \sin \left (d x + c\right ) + {\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/2*(b^3*cos(d*x + c)^2 - 6*a*b^2*sin(d*x + c) + (a^3 - 3*a^2*b + 3*a*b^2 - b^3)*log(sin(d*x + c) + 1) - (a^3
+ 3*a^2*b + 3*a*b^2 + b^3)*log(-sin(d*x + c) + 1))/d

________________________________________________________________________________________

giac [A]  time = 0.53, size = 93, normalized size = 1.16 \[ -\frac {b^{3} \sin \left (d x + c\right )^{2} + 6 \, a b^{2} \sin \left (d x + c\right ) - {\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) + {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/2*(b^3*sin(d*x + c)^2 + 6*a*b^2*sin(d*x + c) - (a^3 - 3*a^2*b + 3*a*b^2 - b^3)*log(abs(sin(d*x + c) + 1)) +
 (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*log(abs(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

maple [A]  time = 0.18, size = 108, normalized size = 1.35 \[ \frac {a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}-\frac {3 a^{2} b \ln \left (\cos \left (d x +c \right )\right )}{d}-\frac {3 a \,b^{2} \sin \left (d x +c \right )}{d}+\frac {3 a \,b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}-\frac {b^{3} \left (\sin ^{2}\left (d x +c \right )\right )}{2 d}-\frac {b^{3} \ln \left (\cos \left (d x +c \right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+b*sin(d*x+c))^3,x)

[Out]

1/d*a^3*ln(sec(d*x+c)+tan(d*x+c))-3/d*a^2*b*ln(cos(d*x+c))-3*a*b^2*sin(d*x+c)/d+3/d*a*b^2*ln(sec(d*x+c)+tan(d*
x+c))-1/2*b^3*sin(d*x+c)^2/d-1/d*b^3*ln(cos(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 91, normalized size = 1.14 \[ -\frac {b^{3} \sin \left (d x + c\right )^{2} + 6 \, a b^{2} \sin \left (d x + c\right ) - {\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \log \left (\sin \left (d x + c\right ) - 1\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/2*(b^3*sin(d*x + c)^2 + 6*a*b^2*sin(d*x + c) - (a^3 - 3*a^2*b + 3*a*b^2 - b^3)*log(sin(d*x + c) + 1) + (a^3
 + 3*a^2*b + 3*a*b^2 + b^3)*log(sin(d*x + c) - 1))/d

________________________________________________________________________________________

mupad [B]  time = 5.13, size = 65, normalized size = 0.81 \[ -\frac {\frac {\ln \left (\sin \left (c+d\,x\right )-1\right )\,{\left (a+b\right )}^3}{2}-\frac {\ln \left (\sin \left (c+d\,x\right )+1\right )\,{\left (a-b\right )}^3}{2}+\frac {b^3\,{\sin \left (c+d\,x\right )}^2}{2}+3\,a\,b^2\,\sin \left (c+d\,x\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(c + d*x))^3/cos(c + d*x),x)

[Out]

-((log(sin(c + d*x) - 1)*(a + b)^3)/2 - (log(sin(c + d*x) + 1)*(a - b)^3)/2 + (b^3*sin(c + d*x)^2)/2 + 3*a*b^2
*sin(c + d*x))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \sin {\left (c + d x \right )}\right )^{3} \sec {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sin(d*x+c))**3,x)

[Out]

Integral((a + b*sin(c + d*x))**3*sec(c + d*x), x)

________________________________________________________________________________________