3.27 \(\int \frac {\tan ^{-1}(\frac {\sqrt {-e} x}{\sqrt {d+e x^2}})}{\sqrt {x}} \, dx\)

Optimal. Leaf size=260 \[ -\frac {2 \sqrt [4]{d} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{e^{3/4} \sqrt {d+e x^2}}+\frac {4 \sqrt [4]{d} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{e^{3/4} \sqrt {d+e x^2}}-\frac {4 \sqrt {-e} \sqrt {x} \sqrt {d+e x^2}}{\sqrt {e} \left (\sqrt {d}+\sqrt {e} x\right )}+2 \sqrt {x} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \]

[Out]

2*x^(1/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))-4*(-e)^(1/2)*x^(1/2)*(e*x^2+d)^(1/2)/e^(1/2)/(d^(1/2)+x*e^(1/2)
)+4*d^(1/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))*EllipticE(
sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(-e)^(1/2)*(d^(1/2)+x*e^(1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/
2))^2)^(1/2)/e^(3/4)/(e*x^2+d)^(1/2)-2*d^(1/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2*arctan(e
^(1/4)*x^(1/2)/d^(1/4)))*EllipticF(sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(-e)^(1/2)*(d^(1/2)+x*e
^(1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^(1/2)/e^(3/4)/(e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 260, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {5151, 329, 305, 220, 1196} \[ -\frac {2 \sqrt [4]{d} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{e^{3/4} \sqrt {d+e x^2}}+\frac {4 \sqrt [4]{d} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{e^{3/4} \sqrt {d+e x^2}}-\frac {4 \sqrt {-e} \sqrt {x} \sqrt {d+e x^2}}{\sqrt {e} \left (\sqrt {d}+\sqrt {e} x\right )}+2 \sqrt {x} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/Sqrt[x],x]

[Out]

(-4*Sqrt[-e]*Sqrt[x]*Sqrt[d + e*x^2])/(Sqrt[e]*(Sqrt[d] + Sqrt[e]*x)) + 2*Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d +
 e*x^2]] + (4*d^(1/4)*Sqrt[-e]*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticE[2*Arc
Tan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(e^(3/4)*Sqrt[d + e*x^2]) - (2*d^(1/4)*Sqrt[-e]*(Sqrt[d] + Sqrt[e]*x)*Sq
rt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(e^(3/4)*Sqrt[d +
 e*x^2])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 5151

Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*ArcTa
n[(c*x)/Sqrt[a + b*x^2]])/(d*(m + 1)), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /; F
reeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \, dx &=2 \sqrt {x} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\left (2 \sqrt {-e}\right ) \int \frac {\sqrt {x}}{\sqrt {d+e x^2}} \, dx\\ &=2 \sqrt {x} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\left (4 \sqrt {-e}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )\\ &=2 \sqrt {x} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {\left (4 \sqrt {d} \sqrt {-e}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {e}}+\frac {\left (4 \sqrt {d} \sqrt {-e}\right ) \operatorname {Subst}\left (\int \frac {1-\frac {\sqrt {e} x^2}{\sqrt {d}}}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {e}}\\ &=-\frac {4 \sqrt {-e} \sqrt {x} \sqrt {d+e x^2}}{\sqrt {e} \left (\sqrt {d}+\sqrt {e} x\right )}+2 \sqrt {x} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )+\frac {4 \sqrt [4]{d} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{e^{3/4} \sqrt {d+e x^2}}-\frac {2 \sqrt [4]{d} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{e^{3/4} \sqrt {d+e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.12, size = 89, normalized size = 0.34 \[ 2 \sqrt {x} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {4 \sqrt {-e} x^{3/2} \sqrt {\frac {e x^2}{d}+1} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {e x^2}{d}\right )}{3 \sqrt {d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/Sqrt[x],x]

[Out]

2*Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]] - (4*Sqrt[-e]*x^(3/2)*Sqrt[1 + (e*x^2)/d]*Hypergeometric2F1[1/2
, 3/4, 7/4, -((e*x^2)/d)])/(3*Sqrt[d + e*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{\sqrt {x}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="fricas")

[Out]

integral(arctan(sqrt(-e)*x/sqrt(e*x^2 + d))/sqrt(x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{\sqrt {x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="giac")

[Out]

integrate(arctan(sqrt(-e)*x/sqrt(e*x^2 + d))/sqrt(x), x)

________________________________________________________________________________________

maple [F]  time = 0.24, size = 0, normalized size = 0.00 \[ \int \frac {\arctan \left (\frac {x \sqrt {-e}}{\sqrt {e \,x^{2}+d}}\right )}{\sqrt {x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x)

[Out]

int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: sign: argument cannot be imaginary
; found sqrt(-_SAGE_VAR_e)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\mathrm {atan}\left (\frac {\sqrt {-e}\,x}{\sqrt {e\,x^2+d}}\right )}{\sqrt {x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2))/x^(1/2),x)

[Out]

int(atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2))/x^(1/2), x)

________________________________________________________________________________________

sympy [C]  time = 8.90, size = 71, normalized size = 0.27 \[ 2 \sqrt {x} \operatorname {atan}{\left (\frac {x \sqrt {- e}}{\sqrt {d + e x^{2}}} \right )} - \frac {x^{\frac {3}{2}} \sqrt {- e} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {e x^{2} e^{i \pi }}{d}} \right )}}{\sqrt {d} \Gamma \left (\frac {7}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atan(x*(-e)**(1/2)/(e*x**2+d)**(1/2))/x**(1/2),x)

[Out]

2*sqrt(x)*atan(x*sqrt(-e)/sqrt(d + e*x**2)) - x**(3/2)*sqrt(-e)*gamma(3/4)*hyper((1/2, 3/4), (7/4,), e*x**2*ex
p_polar(I*pi)/d)/(sqrt(d)*gamma(7/4))

________________________________________________________________________________________