3.13.26 \(\int \frac {(-1+x^2)^{2/3}}{x^3} \, dx\)

Optimal. Leaf size=90 \[ -\frac {\left (x^2-1\right )^{2/3}}{2 x^2}-\frac {1}{3} \log \left (\sqrt [3]{x^2-1}+1\right )+\frac {1}{6} \log \left (\left (x^2-1\right )^{2/3}-\sqrt [3]{x^2-1}+1\right )-\frac {\tan ^{-1}\left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{x^2-1}}{\sqrt {3}}\right )}{\sqrt {3}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 66, normalized size of antiderivative = 0.73, number of steps used = 6, number of rules used = 6, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {266, 47, 56, 618, 204, 31} \begin {gather*} -\frac {\left (x^2-1\right )^{2/3}}{2 x^2}-\frac {1}{2} \log \left (\sqrt [3]{x^2-1}+1\right )-\frac {\tan ^{-1}\left (\frac {1-2 \sqrt [3]{x^2-1}}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {\log (x)}{3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-1 + x^2)^(2/3)/x^3,x]

[Out]

-1/2*(-1 + x^2)^(2/3)/x^2 - ArcTan[(1 - 2*(-1 + x^2)^(1/3))/Sqrt[3]]/Sqrt[3] + Log[x]/3 - Log[1 + (-1 + x^2)^(
1/3)]/2

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 56

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[-((b*c - a*d)/b), 3]}, Simp
[Log[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(
1/3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && Ne
gQ[(b*c - a*d)/b]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {\left (-1+x^2\right )^{2/3}}{x^3} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {(-1+x)^{2/3}}{x^2} \, dx,x,x^2\right )\\ &=-\frac {\left (-1+x^2\right )^{2/3}}{2 x^2}+\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\sqrt [3]{-1+x} x} \, dx,x,x^2\right )\\ &=-\frac {\left (-1+x^2\right )^{2/3}}{2 x^2}+\frac {\log (x)}{3}-\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{1+x} \, dx,x,\sqrt [3]{-1+x^2}\right )+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{1-x+x^2} \, dx,x,\sqrt [3]{-1+x^2}\right )\\ &=-\frac {\left (-1+x^2\right )^{2/3}}{2 x^2}+\frac {\log (x)}{3}-\frac {1}{2} \log \left (1+\sqrt [3]{-1+x^2}\right )-\operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 \sqrt [3]{-1+x^2}\right )\\ &=-\frac {\left (-1+x^2\right )^{2/3}}{2 x^2}+\frac {\tan ^{-1}\left (\frac {-1+2 \sqrt [3]{-1+x^2}}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {\log (x)}{3}-\frac {1}{2} \log \left (1+\sqrt [3]{-1+x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 28, normalized size = 0.31 \begin {gather*} \frac {3}{10} \left (x^2-1\right )^{5/3} \, _2F_1\left (\frac {5}{3},2;\frac {8}{3};1-x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-1 + x^2)^(2/3)/x^3,x]

[Out]

(3*(-1 + x^2)^(5/3)*Hypergeometric2F1[5/3, 2, 8/3, 1 - x^2])/10

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.10, size = 90, normalized size = 1.00 \begin {gather*} -\frac {\left (-1+x^2\right )^{2/3}}{2 x^2}-\frac {\tan ^{-1}\left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{-1+x^2}}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{3} \log \left (1+\sqrt [3]{-1+x^2}\right )+\frac {1}{6} \log \left (1-\sqrt [3]{-1+x^2}+\left (-1+x^2\right )^{2/3}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(-1 + x^2)^(2/3)/x^3,x]

[Out]

-1/2*(-1 + x^2)^(2/3)/x^2 - ArcTan[1/Sqrt[3] - (2*(-1 + x^2)^(1/3))/Sqrt[3]]/Sqrt[3] - Log[1 + (-1 + x^2)^(1/3
)]/3 + Log[1 - (-1 + x^2)^(1/3) + (-1 + x^2)^(2/3)]/6

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 80, normalized size = 0.89 \begin {gather*} \frac {2 \, \sqrt {3} x^{2} \arctan \left (\frac {2}{3} \, \sqrt {3} {\left (x^{2} - 1\right )}^{\frac {1}{3}} - \frac {1}{3} \, \sqrt {3}\right ) + x^{2} \log \left ({\left (x^{2} - 1\right )}^{\frac {2}{3}} - {\left (x^{2} - 1\right )}^{\frac {1}{3}} + 1\right ) - 2 \, x^{2} \log \left ({\left (x^{2} - 1\right )}^{\frac {1}{3}} + 1\right ) - 3 \, {\left (x^{2} - 1\right )}^{\frac {2}{3}}}{6 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-1)^(2/3)/x^3,x, algorithm="fricas")

[Out]

1/6*(2*sqrt(3)*x^2*arctan(2/3*sqrt(3)*(x^2 - 1)^(1/3) - 1/3*sqrt(3)) + x^2*log((x^2 - 1)^(2/3) - (x^2 - 1)^(1/
3) + 1) - 2*x^2*log((x^2 - 1)^(1/3) + 1) - 3*(x^2 - 1)^(2/3))/x^2

________________________________________________________________________________________

giac [A]  time = 0.45, size = 69, normalized size = 0.77 \begin {gather*} \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (x^{2} - 1\right )}^{\frac {1}{3}} - 1\right )}\right ) - \frac {{\left (x^{2} - 1\right )}^{\frac {2}{3}}}{2 \, x^{2}} + \frac {1}{6} \, \log \left ({\left (x^{2} - 1\right )}^{\frac {2}{3}} - {\left (x^{2} - 1\right )}^{\frac {1}{3}} + 1\right ) - \frac {1}{3} \, \log \left ({\left | {\left (x^{2} - 1\right )}^{\frac {1}{3}} + 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-1)^(2/3)/x^3,x, algorithm="giac")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*(x^2 - 1)^(1/3) - 1)) - 1/2*(x^2 - 1)^(2/3)/x^2 + 1/6*log((x^2 - 1)^(2/3) -
(x^2 - 1)^(1/3) + 1) - 1/3*log(abs((x^2 - 1)^(1/3) + 1))

________________________________________________________________________________________

maple [C]  time = 2.03, size = 96, normalized size = 1.07

method result size
risch \(-\frac {\left (x^{2}-1\right )^{\frac {2}{3}}}{2 x^{2}}+\frac {\sqrt {3}\, \Gamma \left (\frac {2}{3}\right ) \left (-\mathrm {signum}\left (x^{2}-1\right )\right )^{\frac {1}{3}} \left (\frac {2 \pi \sqrt {3}\, x^{2} \hypergeom \left (\left [1, 1, \frac {4}{3}\right ], \left [2, 2\right ], x^{2}\right )}{9 \Gamma \left (\frac {2}{3}\right )}+\frac {2 \left (-\frac {\pi \sqrt {3}}{6}-\frac {3 \ln \relax (3)}{2}+2 \ln \relax (x )+i \pi \right ) \pi \sqrt {3}}{3 \Gamma \left (\frac {2}{3}\right )}\right )}{6 \pi \mathrm {signum}\left (x^{2}-1\right )^{\frac {1}{3}}}\) \(96\)
meijerg \(\frac {\sqrt {3}\, \Gamma \left (\frac {2}{3}\right ) \mathrm {signum}\left (x^{2}-1\right )^{\frac {2}{3}} \left (-\frac {\pi \sqrt {3}\, x^{2} \hypergeom \left (\left [1, 1, \frac {4}{3}\right ], \left [2, 3\right ], x^{2}\right )}{9 \Gamma \left (\frac {2}{3}\right )}-\frac {2 \left (-\frac {\pi \sqrt {3}}{6}-\frac {3 \ln \relax (3)}{2}-1+2 \ln \relax (x )+i \pi \right ) \pi \sqrt {3}}{3 \Gamma \left (\frac {2}{3}\right )}-\frac {\pi \sqrt {3}}{\Gamma \left (\frac {2}{3}\right ) x^{2}}\right )}{6 \pi \left (-\mathrm {signum}\left (x^{2}-1\right )\right )^{\frac {2}{3}}}\) \(97\)
trager \(-\frac {\left (x^{2}-1\right )^{\frac {2}{3}}}{2 x^{2}}-\frac {\ln \left (\frac {-576 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right )^{2} x^{2}+180 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right ) \left (x^{2}-1\right )^{\frac {2}{3}}+204 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right ) x^{2}-24 \left (x^{2}-1\right )^{\frac {2}{3}}-108 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right ) \left (x^{2}-1\right )^{\frac {1}{3}}+2304 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right )^{2}-15 x^{2}-15 \left (x^{2}-1\right )^{\frac {1}{3}}-480 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right )+25}{x^{2}}\right )}{3}+4 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right ) \ln \left (-\frac {-720 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right )^{2} x^{2}+180 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right ) \left (x^{2}-1\right )^{\frac {2}{3}}-72 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right ) x^{2}+9 \left (x^{2}-1\right )^{\frac {2}{3}}+288 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right ) \left (x^{2}-1\right )^{\frac {1}{3}}+2880 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right )^{2}+8 x^{2}-15 \left (x^{2}-1\right )^{\frac {1}{3}}-132 \RootOf \left (144 \textit {\_Z}^{2}-12 \textit {\_Z} +1\right )-4}{x^{2}}\right )\) \(294\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2-1)^(2/3)/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/2*(x^2-1)^(2/3)/x^2+1/6/Pi*3^(1/2)*GAMMA(2/3)/signum(x^2-1)^(1/3)*(-signum(x^2-1))^(1/3)*(2/9*Pi*3^(1/2)/GA
MMA(2/3)*x^2*hypergeom([1,1,4/3],[2,2],x^2)+2/3*(-1/6*Pi*3^(1/2)-3/2*ln(3)+2*ln(x)+I*Pi)*Pi*3^(1/2)/GAMMA(2/3)
)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 68, normalized size = 0.76 \begin {gather*} \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (x^{2} - 1\right )}^{\frac {1}{3}} - 1\right )}\right ) - \frac {{\left (x^{2} - 1\right )}^{\frac {2}{3}}}{2 \, x^{2}} + \frac {1}{6} \, \log \left ({\left (x^{2} - 1\right )}^{\frac {2}{3}} - {\left (x^{2} - 1\right )}^{\frac {1}{3}} + 1\right ) - \frac {1}{3} \, \log \left ({\left (x^{2} - 1\right )}^{\frac {1}{3}} + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-1)^(2/3)/x^3,x, algorithm="maxima")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*(x^2 - 1)^(1/3) - 1)) - 1/2*(x^2 - 1)^(2/3)/x^2 + 1/6*log((x^2 - 1)^(2/3) -
(x^2 - 1)^(1/3) + 1) - 1/3*log((x^2 - 1)^(1/3) + 1)

________________________________________________________________________________________

mupad [B]  time = 0.88, size = 86, normalized size = 0.96 \begin {gather*} -\frac {\ln \left ({\left (x^2-1\right )}^{1/3}+1\right )}{3}-\ln \left (9\,{\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )}^2+{\left (x^2-1\right )}^{1/3}\right )\,\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )+\ln \left (9\,{\left (\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )}^2+{\left (x^2-1\right )}^{1/3}\right )\,\left (\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )-\frac {{\left (x^2-1\right )}^{2/3}}{2\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2 - 1)^(2/3)/x^3,x)

[Out]

log(9*((3^(1/2)*1i)/6 + 1/6)^2 + (x^2 - 1)^(1/3))*((3^(1/2)*1i)/6 + 1/6) - log(9*((3^(1/2)*1i)/6 - 1/6)^2 + (x
^2 - 1)^(1/3))*((3^(1/2)*1i)/6 - 1/6) - log((x^2 - 1)^(1/3) + 1)/3 - (x^2 - 1)^(2/3)/(2*x^2)

________________________________________________________________________________________

sympy [C]  time = 0.93, size = 36, normalized size = 0.40 \begin {gather*} - \frac {\Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {2}{3}, \frac {1}{3} \\ \frac {4}{3} \end {matrix}\middle | {\frac {e^{2 i \pi }}{x^{2}}} \right )}}{2 x^{\frac {2}{3}} \Gamma \left (\frac {4}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2-1)**(2/3)/x**3,x)

[Out]

-gamma(1/3)*hyper((-2/3, 1/3), (4/3,), exp_polar(2*I*pi)/x**2)/(2*x**(2/3)*gamma(4/3))

________________________________________________________________________________________