3.23.37 \(\int \frac {1+x^2}{(-1+x^2) \sqrt [3]{x^2+x^4}} \, dx\)

Optimal. Leaf size=167 \[ -\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} x}{2^{2/3} \sqrt [3]{x^4+x^2}-x}\right )}{2 \sqrt [3]{2}}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} x}{2^{2/3} \sqrt [3]{x^4+x^2}+x}\right )}{2 \sqrt [3]{2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{2} x}{\sqrt [3]{x^4+x^2}}\right )}{\sqrt [3]{2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{2} x^2+\frac {\left (x^4+x^2\right )^{2/3}}{\sqrt [3]{2}}}{x \sqrt [3]{x^4+x^2}}\right )}{2 \sqrt [3]{2}} \]

________________________________________________________________________________________

Rubi [C]  time = 0.10, antiderivative size = 42, normalized size of antiderivative = 0.25, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2056, 466, 429} \begin {gather*} -\frac {3 x \sqrt [3]{x^2+1} F_1\left (\frac {1}{6};1,-\frac {2}{3};\frac {7}{6};x^2,-x^2\right )}{\sqrt [3]{x^4+x^2}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Int[(1 + x^2)/((-1 + x^2)*(x^2 + x^4)^(1/3)),x]

[Out]

(-3*x*(1 + x^2)^(1/3)*AppellF1[1/6, 1, -2/3, 7/6, x^2, -x^2])/(x^2 + x^4)^(1/3)

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 466

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Dist[k/e, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/e^n)^p*(c + (d*x^(k*n))/e^n)^q, x], x, (e*
x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Intege
rQ[p]

Rule 2056

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rubi steps

\begin {align*} \int \frac {1+x^2}{\left (-1+x^2\right ) \sqrt [3]{x^2+x^4}} \, dx &=\frac {\left (x^{2/3} \sqrt [3]{1+x^2}\right ) \int \frac {\left (1+x^2\right )^{2/3}}{x^{2/3} \left (-1+x^2\right )} \, dx}{\sqrt [3]{x^2+x^4}}\\ &=\frac {\left (3 x^{2/3} \sqrt [3]{1+x^2}\right ) \operatorname {Subst}\left (\int \frac {\left (1+x^6\right )^{2/3}}{-1+x^6} \, dx,x,\sqrt [3]{x}\right )}{\sqrt [3]{x^2+x^4}}\\ &=-\frac {3 x \sqrt [3]{1+x^2} F_1\left (\frac {1}{6};1,-\frac {2}{3};\frac {7}{6};x^2,-x^2\right )}{\sqrt [3]{x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.07, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1+x^2}{\left (-1+x^2\right ) \sqrt [3]{x^2+x^4}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(1 + x^2)/((-1 + x^2)*(x^2 + x^4)^(1/3)),x]

[Out]

Integrate[(1 + x^2)/((-1 + x^2)*(x^2 + x^4)^(1/3)), x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.53, size = 167, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} x}{-x+2^{2/3} \sqrt [3]{x^2+x^4}}\right )}{2 \sqrt [3]{2}}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} x}{x+2^{2/3} \sqrt [3]{x^2+x^4}}\right )}{2 \sqrt [3]{2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{2} x}{\sqrt [3]{x^2+x^4}}\right )}{\sqrt [3]{2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{2} x^2+\frac {\left (x^2+x^4\right )^{2/3}}{\sqrt [3]{2}}}{x \sqrt [3]{x^2+x^4}}\right )}{2 \sqrt [3]{2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(1 + x^2)/((-1 + x^2)*(x^2 + x^4)^(1/3)),x]

[Out]

-1/2*(Sqrt[3]*ArcTan[(Sqrt[3]*x)/(-x + 2^(2/3)*(x^2 + x^4)^(1/3))])/2^(1/3) - (Sqrt[3]*ArcTan[(Sqrt[3]*x)/(x +
 2^(2/3)*(x^2 + x^4)^(1/3))])/(2*2^(1/3)) - ArcTanh[(2^(1/3)*x)/(x^2 + x^4)^(1/3)]/2^(1/3) - ArcTanh[(2^(1/3)*
x^2 + (x^2 + x^4)^(2/3)/2^(1/3))/(x*(x^2 + x^4)^(1/3))]/(2*2^(1/3))

________________________________________________________________________________________

fricas [A]  time = 1.75, size = 232, normalized size = 1.39 \begin {gather*} -\frac {1}{4} \, \sqrt {3} 2^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} 2^{\frac {1}{6}} {\left (2^{\frac {5}{6}} {\left (x^{5} + 8 \, x^{4} - 2 \, x^{3} + 8 \, x^{2} + x\right )} + 8 \, \sqrt {2} {\left (x^{4} + x^{2}\right )}^{\frac {1}{3}} {\left (x^{3} + 2 \, x^{2} + x\right )} + 8 \cdot 2^{\frac {1}{6}} {\left (x^{4} + x^{2}\right )}^{\frac {2}{3}} {\left (x^{2} - 2 \, x + 1\right )}\right )}}{6 \, {\left (x^{5} - 8 \, x^{4} - 2 \, x^{3} - 8 \, x^{2} + x\right )}}\right ) + \frac {1}{4} \cdot 2^{\frac {2}{3}} \log \left (-\frac {2^{\frac {2}{3}} {\left (x^{3} - 2 \, x^{2} + x\right )} + 4 \cdot 2^{\frac {1}{3}} {\left (x^{4} + x^{2}\right )}^{\frac {1}{3}} x - 4 \, {\left (x^{4} + x^{2}\right )}^{\frac {2}{3}}}{x^{3} + 2 \, x^{2} + x}\right ) - \frac {1}{8} \cdot 2^{\frac {2}{3}} \log \left (\frac {2 \cdot 2^{\frac {2}{3}} {\left (x^{4} + x^{2}\right )}^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (x^{3} + 2 \, x^{2} + x\right )} + 4 \, {\left (x^{4} + x^{2}\right )}^{\frac {1}{3}} x}{x^{3} + 2 \, x^{2} + x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^2-1)/(x^4+x^2)^(1/3),x, algorithm="fricas")

[Out]

-1/4*sqrt(3)*2^(2/3)*arctan(1/6*sqrt(3)*2^(1/6)*(2^(5/6)*(x^5 + 8*x^4 - 2*x^3 + 8*x^2 + x) + 8*sqrt(2)*(x^4 +
x^2)^(1/3)*(x^3 + 2*x^2 + x) + 8*2^(1/6)*(x^4 + x^2)^(2/3)*(x^2 - 2*x + 1))/(x^5 - 8*x^4 - 2*x^3 - 8*x^2 + x))
 + 1/4*2^(2/3)*log(-(2^(2/3)*(x^3 - 2*x^2 + x) + 4*2^(1/3)*(x^4 + x^2)^(1/3)*x - 4*(x^4 + x^2)^(2/3))/(x^3 + 2
*x^2 + x)) - 1/8*2^(2/3)*log((2*2^(2/3)*(x^4 + x^2)^(2/3) + 2^(1/3)*(x^3 + 2*x^2 + x) + 4*(x^4 + x^2)^(1/3)*x)
/(x^3 + 2*x^2 + x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} + 1}{{\left (x^{4} + x^{2}\right )}^{\frac {1}{3}} {\left (x^{2} - 1\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^2-1)/(x^4+x^2)^(1/3),x, algorithm="giac")

[Out]

integrate((x^2 + 1)/((x^4 + x^2)^(1/3)*(x^2 - 1)), x)

________________________________________________________________________________________

maple [C]  time = 27.20, size = 3893, normalized size = 23.31

method result size
trager \(\text {Expression too large to display}\) \(3893\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+1)/(x^2-1)/(x^4+x^2)^(1/3),x,method=_RETURNVERBOSE)

[Out]

-1/4*ln((103270595614550*RootOf(_Z^3-4)*x^5+4019307231787848*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x
^2+193570532266839*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x+2144315288715600*RootOf(_Z^3-4)*x^4-20654
1191229100*RootOf(_Z^3-4)*x^3+2144315288715600*RootOf(_Z^3-4)*x^2+103270595614550*RootOf(_Z^3-4)*x+11066401257
61716*(x^4+x^2)^(2/3)+4019307231787848*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x^4-387141064533678*Roo
tOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x^3+193570532266839*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^
2)*x^5+86997992030040*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x+46413750838000*Root
Of(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x-78298192827036*RootOf(RootOf(_Z^3-4)^2+_Z*RootO
f(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^4-41772375754200*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_
Z^3-4)^3*x^4-173995984060080*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^3-9282750167
6000*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x^3+112141044506364*RootOf(RootOf(_Z^3-4
)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^4*x^3-78298192827036*RootOf(RootOf(_Z^3-4)^2+_Z*Roo
tOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^2-41772375754200*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf
(_Z^3-4)^3*x^2-548711573636490*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*(x^4+x^2)^(1/3)*RootOf(_Z^3-4
)^3*x^2-280352611265910*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^4*x^2+2
19484629454596*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^3*(x^4+x^2)^(1/3)*x+7973363439
50328*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(2/3)*RootOf(_Z^3-4)^2*x^2+112141044506364*Roo
tOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^4*(x^4+x^2)^(1/3)*x+242958643915260*(x^4+x^2)^(2/3
)*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^2*x+2085103979818662*RootOf(RootOf(_Z^3-4)^2+
_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)*x^3-219484629454596*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_
Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)*x^2+2085103979818662*(x^4+x^2)^(1/3)*RootOf(RootOf(_Z^3-4)^2+_Z*Ro
otOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)*x+122536959111840*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*(x^4+x^2
)^(2/3)*RootOf(_Z^3-4)^4*x^2-306342397779600*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^
4*(x^4+x^2)^(2/3)*x+219484629454596*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*(x^4+x^2)^(1/3)*RootOf(_
Z^3-4)^3*x^3+86997992030040*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^5+46413750838
000*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x^5+1065339922810458*(x^4+x^2)^(1/3)*Root
Of(_Z^3-4)^2*x+122536959111840*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^4*(x^4+x^2)^(2
/3)+1065339922810458*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^2*x^3+797336343950328*(x^4+x^2)^(2/3)*RootOf(RootOf(_Z^3-4
)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^2-112141044506364*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^2*x^2+172144019562
9336*(x^4+x^2)^(2/3)*x+1106640125761716*(x^4+x^2)^(2/3)*x^2)/(-1+x)^2/(1+x)^2/x)*RootOf(RootOf(_Z^3-4)^2+_Z*Ro
otOf(_Z^3-4)+_Z^2)-1/4*ln((103270595614550*RootOf(_Z^3-4)*x^5+4019307231787848*RootOf(RootOf(_Z^3-4)^2+_Z*Root
Of(_Z^3-4)+_Z^2)*x^2+193570532266839*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x+2144315288715600*RootOf
(_Z^3-4)*x^4-206541191229100*RootOf(_Z^3-4)*x^3+2144315288715600*RootOf(_Z^3-4)*x^2+103270595614550*RootOf(_Z^
3-4)*x+1106640125761716*(x^4+x^2)^(2/3)+4019307231787848*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x^4-3
87141064533678*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x^3+193570532266839*RootOf(RootOf(_Z^3-4)^2+_Z*
RootOf(_Z^3-4)+_Z^2)*x^5+86997992030040*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x+4
6413750838000*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x-78298192827036*RootOf(RootOf(
_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^4-41772375754200*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3
-4)+_Z^2)*RootOf(_Z^3-4)^3*x^4-173995984060080*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4
)^2*x^3-92827501676000*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x^3+112141044506364*Ro
otOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^4*x^3-78298192827036*RootOf(RootO
f(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^2-41772375754200*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z
^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x^2-548711573636490*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*(x^4+x^2)^(
1/3)*RootOf(_Z^3-4)^3*x^2-280352611265910*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*Root
Of(_Z^3-4)^4*x^2+219484629454596*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^3*(x^4+x^2)^
(1/3)*x+797336343950328*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(2/3)*RootOf(_Z^3-4)^2*x^2+1
12141044506364*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^4*(x^4+x^2)^(1/3)*x+242958643915
260*(x^4+x^2)^(2/3)*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^2*x+2085103979818662*RootOf
(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)*x^3-219484629454596*RootOf(RootOf(_Z^
3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)*x^2+2085103979818662*(x^4+x^2)^(1/3)*RootOf(Root
Of(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)*x+122536959111840*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4
)+_Z^2)^2*(x^4+x^2)^(2/3)*RootOf(_Z^3-4)^4*x^2-306342397779600*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)
^2*RootOf(_Z^3-4)^4*(x^4+x^2)^(2/3)*x+219484629454596*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*(x^4+x
^2)^(1/3)*RootOf(_Z^3-4)^3*x^3+86997992030040*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)
^2*x^5+46413750838000*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x^5+1065339922810458*(x
^4+x^2)^(1/3)*RootOf(_Z^3-4)^2*x+122536959111840*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3
-4)^4*(x^4+x^2)^(2/3)+1065339922810458*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^2*x^3+797336343950328*(x^4+x^2)^(2/3)*Ro
otOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^2-112141044506364*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^
2*x^2+1721440195629336*(x^4+x^2)^(2/3)*x+1106640125761716*(x^4+x^2)^(2/3)*x^2)/(-1+x)^2/(1+x)^2/x)*RootOf(_Z^3
-4)+1/4*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*ln((72037028115871*RootOf(_Z^3-4)*x^5-4332500003095992
*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x^2+154421435853321*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)
+_Z^2)*x-2021095211363592*RootOf(_Z^3-4)*x^4-144074056231742*RootOf(_Z^3-4)*x^3-2021095211363592*RootOf(_Z^3-4
)*x^2+72037028115871*RootOf(_Z^3-4)*x-122113904250156*(x^4+x^2)^(2/3)-4332500003095992*RootOf(RootOf(_Z^3-4)^2
+_Z*RootOf(_Z^3-4)+_Z^2)*x^4-308842871706642*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x^3+1544214358533
21*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*x^5+86997992030040*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4
)+_Z^2)^2*RootOf(_Z^3-4)^2*x+40584241192040*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x
-78298192827036*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^4-36525817072836*RootOf(R
ootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x^4-173995984060080*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf
(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^3-81168482384080*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z
^3-4)^3*x^3+107343584948232*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^4*x
^3-78298192827036*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^2-36525817072836*RootOf
(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^3*x^2-548711573636490*RootOf(RootOf(_Z^3-4)^2+_Z*Root
Of(_Z^3-4)+_Z^2)^2*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^3*x^2-268358962370580*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3
-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^4*x^2+219484629454596*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)
^2*RootOf(_Z^3-4)^3*(x^4+x^2)^(1/3)*x+182959328944392*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2
)^(2/3)*RootOf(_Z^3-4)^2*x^2+107343584948232*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^4*
(x^4+x^2)^(1/3)*x-2693697826152060*(x^4+x^2)^(2/3)*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3
-4)^2*x-1207165462000278*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)*x^3-19
75361665091364*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)*x^2-120716546200
0278*(x^4+x^2)^(1/3)*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)*x+122536959111840*RootOf(R
ootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*(x^4+x^2)^(2/3)*RootOf(_Z^3-4)^4*x^2-306342397779600*RootOf(RootOf(_
Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^4*(x^4+x^2)^(2/3)*x+219484629454596*RootOf(RootOf(_Z^3-4)^2+
_Z*RootOf(_Z^3-4)+_Z^2)^2*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^3*x^3+86997992030040*RootOf(RootOf(_Z^3-4)^2+_Z*RootO
f(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^2*x^5+40584241192040*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_
Z^3-4)^3*x^5-590389717215276*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^2*x+122536959111840*RootOf(RootOf(_Z^3-4)^2+_Z*Roo
tOf(_Z^3-4)+_Z^2)^2*RootOf(_Z^3-4)^4*(x^4+x^2)^(2/3)-590389717215276*(x^4+x^2)^(1/3)*RootOf(_Z^3-4)^2*x^3+1829
59328944392*(x^4+x^2)^(2/3)*RootOf(RootOf(_Z^3-4)^2+_Z*RootOf(_Z^3-4)+_Z^2)*RootOf(_Z^3-4)^2-966092264534088*(
x^4+x^2)^(1/3)*RootOf(_Z^3-4)^2*x^2-4151872744505304*(x^4+x^2)^(2/3)*x-122113904250156*(x^4+x^2)^(2/3)*x^2)/(-
1+x)^2/(1+x)^2/x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} + 1}{{\left (x^{4} + x^{2}\right )}^{\frac {1}{3}} {\left (x^{2} - 1\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^2-1)/(x^4+x^2)^(1/3),x, algorithm="maxima")

[Out]

integrate((x^2 + 1)/((x^4 + x^2)^(1/3)*(x^2 - 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^2+1}{{\left (x^4+x^2\right )}^{1/3}\,\left (x^2-1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2 + 1)/((x^2 + x^4)^(1/3)*(x^2 - 1)),x)

[Out]

int((x^2 + 1)/((x^2 + x^4)^(1/3)*(x^2 - 1)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} + 1}{\sqrt [3]{x^{2} \left (x^{2} + 1\right )} \left (x - 1\right ) \left (x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+1)/(x**2-1)/(x**4+x**2)**(1/3),x)

[Out]

Integral((x**2 + 1)/((x**2*(x**2 + 1))**(1/3)*(x - 1)*(x + 1)), x)

________________________________________________________________________________________