43.3 Problem number 529

\[ \int \frac {e^{3-x-\frac {e^{3-x} \left (1+5 e^{-3+x} x\right )}{x}} \left (-1-x-e^{-3+x} x+6 e^{-3+x+\frac {e^{3-x} \left (1+5 e^{-3+x} x\right )}{x}} x\right )}{5 x} \, dx \]

Optimal antiderivative \[ \frac {6 x}{5}-1-\frac {x \,{\mathrm e}^{-5-\frac {{\mathrm e}^{3-x}}{x}}}{5}-{\mathrm e}^{3} \]

command

integrate(1/5*(6*x*exp(-3+x)*exp((5*x*exp(-3+x)+1)/x/exp(-3+x))-x*exp(-3+x)-x-1)/x/exp(-3+x)/exp((5*x*exp(-3+x)+1)/x/exp(-3+x)),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {1}{5} \, x e^{\left (-\frac {5 \, x + e^{\left (-x + 3\right )}}{x}\right )} + \frac {6}{5} \, x \]