43.4 Problem number 756

\[ \int \frac {e^{1+8 x+x^2+x \log \left (\frac {7-3 e^4+6 x}{3 x}\right )} \left (-49-62 x-12 x^2+e^4 (21+6 x)+\left (-7+3 e^4-6 x\right ) \log \left (\frac {7-3 e^4+6 x}{3 x}\right )\right )}{-7+3 e^4-6 x} \, dx \]

Optimal antiderivative \[ {\mathrm e}^{x \left (8+\ln \left (\frac {\frac {7}{3}-{\mathrm e}^{4}}{x}+2\right )+x \right )+1} \]

command

integrate(((3*exp(4)-6*x-7)*log(1/3*(-3*exp(4)+6*x+7)/x)+(6*x+21)*exp(4)-12*x^2-62*x-49)*exp(x*log(1/3*(-3*exp(4)+6*x+7)/x)+x^2+8*x+1)/(3*exp(4)-6*x-7),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ e^{\left (x^{2} + x \log \left (-\frac {e^{4}}{x} + \frac {7}{3 \, x} + 2\right ) + 8 \, x + 1\right )} \]