18.12 Problem number 230

\[ \int \frac {\csc (a+b x)}{(d \cos (a+b x))^{7/2}} \, dx \]

Optimal antiderivative \[ \frac {\arctan \! \left (\frac {\sqrt {d \cos \left (b x +a \right )}}{\sqrt {d}}\right )}{b \,d^{\frac {7}{2}}}-\frac {\arctanh \! \left (\frac {\sqrt {d \cos \left (b x +a \right )}}{\sqrt {d}}\right )}{b \,d^{\frac {7}{2}}}+\frac {2}{5 b d \left (d \cos \! \left (b x +a \right )\right )^{\frac {5}{2}}}+\frac {2}{b \,d^{3} \sqrt {d \cos \! \left (b x +a \right )}} \]

command

integrate(csc(b*x+a)/(d*cos(b*x+a))^(7/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \frac {\frac {10 \, \arctan \left (-\frac {\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}}{\sqrt {-d}}\right )}{\sqrt {-d}} + \frac {5 \, \log \left ({\left | -\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} + \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d} \right |}\right )}{\sqrt {-d}} - \frac {16 \, {\left (5 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{4} - 10 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{3} \sqrt {-d} - 20 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{2} d + 10 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )} \sqrt {-d} d + 3 \, d^{2}\right )}}{{\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d} - \sqrt {-d}\right )}^{5}}}{10 \, b d^{3}} \]