\[ \int \frac {\csc (a+b x)}{(d \cos (a+b x))^{9/2}} \, dx \]
Optimal antiderivative \[ -\frac {\arctan \! \left (\frac {\sqrt {d \cos \left (b x +a \right )}}{\sqrt {d}}\right )}{b \,d^{\frac {9}{2}}}-\frac {\arctanh \! \left (\frac {\sqrt {d \cos \left (b x +a \right )}}{\sqrt {d}}\right )}{b \,d^{\frac {9}{2}}}+\frac {2}{7 b d \left (d \cos \! \left (b x +a \right )\right )^{\frac {7}{2}}}+\frac {2}{3 b \,d^{3} \left (d \cos \! \left (b x +a \right )\right )^{\frac {3}{2}}} \]
command
integrate(csc(b*x+a)/(d*cos(b*x+a))^(9/2),x, algorithm="giac")
Giac 1.9.0-11 via sagemath 9.6 output
\[ \text {could not integrate} \]
Giac 1.7.0 via sagemath 9.3 output
\[ \frac {\frac {42 \, \arctan \left (-\frac {\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}}{\sqrt {-d}}\right )}{\sqrt {-d}} - \frac {21 \, \log \left ({\left | -\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} + \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d} \right |}\right )}{\sqrt {-d}} + \frac {16 \, {\left (21 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{6} - 42 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{5} \sqrt {-d} - 119 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{4} d + 56 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{3} \sqrt {-d} d + 63 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{2} d^{2} - 14 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )} \sqrt {-d} d^{2} - 5 \, d^{3}\right )}}{{\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d} - \sqrt {-d}\right )}^{7}}}{42 \, b d^{4}} \]