18.14 Problem number 249

\[ \int \frac {\csc ^3(a+b x)}{(d \cos (a+b x))^{3/2}} \, dx \]

Optimal antiderivative \[ \frac {5 \arctan \! \left (\frac {\sqrt {d \cos \left (b x +a \right )}}{\sqrt {d}}\right )}{4 b \,d^{\frac {3}{2}}}-\frac {5 \arctanh \! \left (\frac {\sqrt {d \cos \left (b x +a \right )}}{\sqrt {d}}\right )}{4 b \,d^{\frac {3}{2}}}+\frac {5}{2 b d \sqrt {d \cos \! \left (b x +a \right )}}-\frac {\csc ^{2}\left (b x +a \right )}{2 b d \sqrt {d \cos \! \left (b x +a \right )}} \]

command

integrate(csc(b*x+a)^3/(d*cos(b*x+a))^(3/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \frac {\frac {10 \, \arctan \left (-\frac {\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}}{\sqrt {-d}}\right )}{\sqrt {-d}} + \frac {5 \, \log \left ({\left | -\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} + \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d} \right |}\right )}{\sqrt {-d}} - \frac {2 \, {\left (16 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{2} - {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )} \sqrt {-d} - 17 \, d\right )}}{{\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{3} - {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{2} \sqrt {-d} - {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )} d + \sqrt {-d} d} + \frac {\sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}}{d}}{8 \, b d} \]