\[ \int x^3 \coth ^{-1}(\tanh (a+b x))^3 \, dx \]
Optimal antiderivative \[ -\frac {b^{3} x^{7}}{140}+\frac {b^{2} x^{6} \mathrm {arccoth}\! \left (\tanh \! \left (b x +a \right )\right )}{20}-\frac {3 b \,x^{5} \mathrm {arccoth}\! \left (\tanh \! \left (b x +a \right )\right )^{2}}{20}+\frac {x^{4} \mathrm {arccoth}\! \left (\tanh \! \left (b x +a \right )\right )^{3}}{4} \]
command
int(x^3*arccoth(tanh(b*x+a))^3,x)
Maple 2022.1 output
\[\int x^{3} \mathrm {arccoth}\left (\tanh \left (b x +a \right )\right )^{3}\, dx\]
Maple 2021.1 output
\[ \text {output too large to display} \]