18.3 Problem number 149

\[ \int x^2 \coth ^{-1}(\tanh (a+b x))^3 \, dx \]

Optimal antiderivative \[ \frac {x^{2} \mathrm {arccoth}\! \left (\tanh \! \left (b x +a \right )\right )^{4}}{4 b}-\frac {x \mathrm {arccoth}\! \left (\tanh \! \left (b x +a \right )\right )^{5}}{10 b^{2}}+\frac {\mathrm {arccoth}\! \left (\tanh \! \left (b x +a \right )\right )^{6}}{60 b^{3}} \]

command

int(x^2*arccoth(tanh(b*x+a))^3,x)

Maple 2022.1 output

\[\int x^{2} \mathrm {arccoth}\left (\tanh \left (b x +a \right )\right )^{3}\, dx\]

Maple 2021.1 output

\[ \text {output too large to display} \]