Optimal antiderivative
command
Integrate[(-1000 - 5000*x - 6200*x^2 - 2900*x^3 - 1000*x^4 - 1000*x^5 - 400*x^6 + (200 + 1850*x + 1600*x^2 + 350*x^3 + 300*x^4 + 300*x^5)*Log[5] + (-200*x - 50*x^2 - 50*x^4)*Log[5]^2 + (-200 - 1850*x - 1600*x^2 - 350*x^3 - 300*x^4 - 300*x^5 + (400*x + 100*x^2 + 100*x^4)*Log[5])*Log[x/(4 + x + x^3)] + (-200*x - 50*x^2 - 50*x^4)*Log[x/(4 + x + x^3)]^2)/(256*x^3 + 448*x^4 + 288*x^5 + 144*x^6 + 104*x^7 + 48*x^8 + 8*x^9 + (-192*x^3 - 240*x^4 - 96*x^5 - 60*x^6 - 48*x^7 - 12*x^8)*Log[5] + (48*x^3 + 36*x^4 + 6*x^5 + 12*x^6 + 6*x^7)*Log[5]^2 + (-4*x^3 - x^4 - x^6)*Log[5]^3 + (192*x^3 + 240*x^4 + 96*x^5 + 60*x^6 + 48*x^7 + 12*x^8 + (-96*x^3 - 72*x^4 - 12*x^5 - 24*x^6 - 12*x^7)*Log[5] + (12*x^3 + 3*x^4 + 3*x^6)*Log[5]^2)*Log[x/(4 + x + x^3)] + (48*x^3 + 36*x^4 + 6*x^5 + 12*x^6 + 6*x^7 + (-12*x^3 - 3*x^4 - 3*x^6)*Log[5])*Log[x/(4 + x + x^3)]^2 + (4*x^3 + x^4 + x^6)*Log[x/(4 + x + x^3)]^3),x]
Mathematica 13.1 output
Mathematica 12.3 output