14.4 Problem number 352

\[ \int \frac {a+b x^2}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx \]

Optimal antiderivative \[ \frac {\left (2 a \,c^{2}+b \right ) \mathrm {arccosh}\! \left (c x \right )}{2 c^{3}}+\frac {b x \sqrt {c x -1}\, \sqrt {c x +1}}{2 c^{2}} \]

command

integrate((b*x**2+a)/(c*x-1)**(1/2)/(c*x+1)**(1/2),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Timed out} \]

Sympy 1.8 under Python 3.8.8 output

\[ \frac {a {G_{6, 6}^{6, 2}\left (\begin {matrix} \frac {1}{4}, \frac {3}{4} & \frac {1}{2}, \frac {1}{2}, 1, 1 \\0, \frac {1}{4}, \frac {1}{2}, \frac {3}{4}, 1, 0 & \end {matrix} \middle | {\frac {1}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} c} - \frac {i a {G_{6, 6}^{2, 6}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4}, 0, \frac {1}{4}, \frac {1}{2}, 1 & \\- \frac {1}{4}, \frac {1}{4} & - \frac {1}{2}, 0, 0, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} c} + \frac {b {G_{6, 6}^{6, 2}\left (\begin {matrix} - \frac {3}{4}, - \frac {1}{4} & - \frac {1}{2}, - \frac {1}{2}, 0, 1 \\-1, - \frac {3}{4}, - \frac {1}{2}, - \frac {1}{4}, 0, 0 & \end {matrix} \middle | {\frac {1}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} c^{3}} - \frac {i b {G_{6, 6}^{2, 6}\left (\begin {matrix} - \frac {3}{2}, - \frac {5}{4}, -1, - \frac {3}{4}, - \frac {1}{2}, 1 & \\- \frac {5}{4}, - \frac {3}{4} & - \frac {3}{2}, -1, -1, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} c^{3}} \]