14.5 Problem number 355

\[ \int \frac {a+b x^2}{x^3 \sqrt {-1+c x} \sqrt {1+c x}} \, dx \]

Optimal antiderivative \[ \frac {\left (a \,c^{2}+2 b \right ) \arctan \! \left (\sqrt {c x -1}\, \sqrt {c x +1}\right )}{2}+\frac {a \sqrt {c x -1}\, \sqrt {c x +1}}{2 x^{2}} \]

command

integrate((b*x**2+a)/x**3/(c*x-1)**(1/2)/(c*x+1)**(1/2),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Timed out} \]

Sympy 1.8 under Python 3.8.8 output

\[ - \frac {a c^{2} {G_{6, 6}^{5, 3}\left (\begin {matrix} \frac {7}{4}, \frac {9}{4}, 1 & 2, 2, \frac {5}{2} \\\frac {3}{2}, \frac {7}{4}, 2, \frac {9}{4}, \frac {5}{2} & 0 \end {matrix} \middle | {\frac {1}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} + \frac {i a c^{2} {G_{6, 6}^{2, 6}\left (\begin {matrix} 1, \frac {5}{4}, \frac {3}{2}, \frac {7}{4}, 2, 1 & \\\frac {5}{4}, \frac {7}{4} & 1, \frac {3}{2}, \frac {3}{2}, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} - \frac {b {G_{6, 6}^{5, 3}\left (\begin {matrix} \frac {3}{4}, \frac {5}{4}, 1 & 1, 1, \frac {3}{2} \\\frac {1}{2}, \frac {3}{4}, 1, \frac {5}{4}, \frac {3}{2} & 0 \end {matrix} \middle | {\frac {1}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} + \frac {i b {G_{6, 6}^{2, 6}\left (\begin {matrix} 0, \frac {1}{4}, \frac {1}{2}, \frac {3}{4}, 1, 1 & \\\frac {1}{4}, \frac {3}{4} & 0, \frac {1}{2}, \frac {1}{2}, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} \]