59.10 Problem number 194

\[ \int \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2 \, dx \]

Optimal antiderivative \[ \frac {10 i a^{2} \sqrt {e \sec \left (d x +c \right )}}{3 d}+\frac {10 a^{2} \sqrt {\frac {\cos \left (d x +c \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sin \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {e \sec \left (d x +c \right )}}{3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) d}+\frac {2 i \sqrt {e \sec \left (d x +c \right )}\, \left (a^{2}+i a^{2} \tan \left (d x +c \right )\right )}{3 d} \]

command

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ -\frac {2 \, {\left (\frac {\sqrt {2} {\left (-5 i \, a^{2} e^{\frac {1}{2}} - 7 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c + \frac {1}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 5 \, {\left (i \, \sqrt {2} a^{2} e^{\frac {1}{2}} + i \, \sqrt {2} a^{2} e^{\left (2 i \, d x + 2 i \, c + \frac {1}{2}\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right )}}{3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ \frac {\sqrt {2} {\left (14 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 10 i \, a^{2}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + 3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} {\rm integral}\left (-\frac {5 i \, \sqrt {2} a^{2} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac {1}{2} i \, d x - \frac {1}{2} i \, c\right )}}{3 \, d}, x\right )}{3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]