59.11 Problem number 195

\[ \int \frac {(a+i a \tan (c+d x))^2}{\sqrt {e \sec (c+d x)}} \, dx \]

Optimal antiderivative \[ \frac {6 a^{2} \sqrt {\frac {\cos \left (d x +c \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sin \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) d \sqrt {\cos \left (d x +c \right )}\, \sqrt {e \sec \left (d x +c \right )}}-\frac {6 a^{2} \sin \left (d x +c \right ) \sqrt {e \sec \left (d x +c \right )}}{d e}-\frac {4 i \left (a^{2}+i a^{2} \tan \left (d x +c \right )\right )}{d \sqrt {e \sec \left (d x +c \right )}} \]

command

integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ -\frac {2 \, {\left (-3 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) - \frac {i \, \sqrt {2} a^{2} e^{\left (\frac {3}{2} i \, d x + \frac {3}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {1}{2}\right )}}{d} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ \frac {\sqrt {2} {\left (-4 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - 2 i \, a^{2} e^{\left (i \, d x + i \, c\right )} - 6 i \, a^{2}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + {\left (d e e^{\left (i \, d x + i \, c\right )} - d e\right )} {\rm integral}\left (\frac {\sqrt {2} {\left (-3 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - 6 i \, a^{2} e^{\left (i \, d x + i \, c\right )} - 3 i \, a^{2}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{d e e^{\left (3 i \, d x + 3 i \, c\right )} - 2 \, d e e^{\left (2 i \, d x + 2 i \, c\right )} + d e e^{\left (i \, d x + i \, c\right )}}, x\right )}{d e e^{\left (i \, d x + i \, c\right )} - d e} \]