Integral number [166] \[ \int \frac {(f x)^m \left (a+b \log \left (c x^n\right )\right )}{d+e x} \, dx \]
[B] time = 0.067911 (sec), size = 72 ,normalized size = 2.77 \[ \frac {x (f x)^m \left (-b n \, _3F_2\left (1,1+m,1+m;2+m,2+m;-\frac {e x}{d}\right )+(1+m) \, _2F_1\left (1,1+m;2+m;-\frac {e x}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{d (1+m)^2} \]
[In]
[Out]
Integral number [167] \[ \int \frac {(f x)^m \left (a+b \log \left (c x^n\right )\right )}{(d+e x)^2} \, dx \]
[B] time = 0.064168 (sec), size = 72 ,normalized size = 2.77 \[ \frac {x (f x)^m \left (-b n \, _3F_2\left (2,1+m,1+m;2+m,2+m;-\frac {e x}{d}\right )+(1+m) \, _2F_1\left (2,1+m;2+m;-\frac {e x}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{d^2 (1+m)^2} \]
[In]
[Out]
Integral number [168] \[ \int x (a+b x)^m \log \left (c x^n\right ) \, dx \]
[B] time = 0.171397 (sec), size = 173 ,normalized size = 9.61 \[ \frac {(a+b x)^m \left (1+\frac {b x}{a}\right )^{-m} \left (-n \left (2 a b x \left (1+\frac {b x}{a}\right )^m+b^2 x^2 \left (1+\frac {b x}{a}\right )^m+a^2 \left (-1+\left (1+\frac {b x}{a}\right )^m\right )\right )+a b (2+m) n x \, _3F_2\left (1,1,-1-m;2,2;-\frac {b x}{a}\right )+\left (a b m x \left (1+\frac {b x}{a}\right )^m+b^2 (1+m) x^2 \left (1+\frac {b x}{a}\right )^m-a^2 \left (-1+\left (1+\frac {b x}{a}\right )^m\right )\right ) \log \left (c x^n\right )\right )}{b^2 (1+m) (2+m)} \]
[In]
[Out]
Integral number [170] \[ \int \frac {(a+b x)^m \log \left (c x^n\right )}{x} \, dx \]
[B] time = 0.043397 (sec), size = 89 ,normalized size = 4.45 \[ \frac {\left (1+\frac {a}{b x}\right )^{-m} (a+b x)^m \left (-n \, _3F_2\left (-m,-m,-m;1-m,1-m;-\frac {a}{b x}\right )+m \, _2F_1\left (-m,-m;1-m;-\frac {a}{b x}\right ) \log \left (c x^n\right )\right )}{m^2} \]
[In]
[Out]
Integral number [322] \[ \int \frac {(f x)^m \left (a+b \log \left (c x^n\right )\right )}{d+e x^2} \, dx \]
[B] time = 0.148536 (sec), size = 108 ,normalized size = 3.86 \[ \frac {x (f x)^m \left (-b n \, _3F_2\left (1,\frac {1}{2}+\frac {m}{2},\frac {1}{2}+\frac {m}{2};\frac {3}{2}+\frac {m}{2},\frac {3}{2}+\frac {m}{2};-\frac {e x^2}{d}\right )+(1+m) \, _2F_1\left (1,\frac {1+m}{2};\frac {3+m}{2};-\frac {e x^2}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{d (1+m)^2} \]
[In]
[Out]
Integral number [323] \[ \int \frac {(f x)^m \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^2\right )^2} \, dx \]
[B] time = 0.073768 (sec), size = 108 ,normalized size = 3.86 \[ \frac {x (f x)^m \left (-b n \, _3F_2\left (2,\frac {1}{2}+\frac {m}{2},\frac {1}{2}+\frac {m}{2};\frac {3}{2}+\frac {m}{2},\frac {3}{2}+\frac {m}{2};-\frac {e x^2}{d}\right )+(1+m) \, _2F_1\left (2,\frac {1+m}{2};\frac {3+m}{2};-\frac {e x^2}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{d^2 (1+m)^2} \]
[In]
[Out]
Integral number [406] \[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]
[B] time = 0.071534 (sec), size = 87 ,normalized size = 3.35 \[ \frac {x^4 \left (-b n \, _3F_2\left (1,\frac {4}{r},\frac {4}{r};1+\frac {4}{r},1+\frac {4}{r};-\frac {e x^r}{d}\right )+4 \, _2F_1\left (1,\frac {4}{r};\frac {4+r}{r};-\frac {e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{16 d} \]
[In]
[Out]
Integral number [407] \[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]
[B] time = 0.065757 (sec), size = 87 ,normalized size = 3.62 \[ \frac {x^2 \left (-b n \, _3F_2\left (1,\frac {2}{r},\frac {2}{r};1+\frac {2}{r},1+\frac {2}{r};-\frac {e x^r}{d}\right )+2 \, _2F_1\left (1,\frac {2}{r};\frac {2+r}{r};-\frac {e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{4 d} \]
[In]
[Out]
Integral number [409] \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^r\right )} \, dx \]
[B] time = 0.065247 (sec), size = 86 ,normalized size = 3.31 \[ -\frac {b n \, _3F_2\left (1,-\frac {2}{r},-\frac {2}{r};1-\frac {2}{r},1-\frac {2}{r};-\frac {e x^r}{d}\right )+2 \, _2F_1\left (1,-\frac {2}{r};\frac {-2+r}{r};-\frac {e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d x^2} \]
[In]
[Out]
Integral number [410] \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]
[B] time = 0.066602 (sec), size = 87 ,normalized size = 3.35 \[ \frac {x^3 \left (-b n \, _3F_2\left (1,\frac {3}{r},\frac {3}{r};1+\frac {3}{r},1+\frac {3}{r};-\frac {e x^r}{d}\right )+3 \, _2F_1\left (1,\frac {3}{r};\frac {3+r}{r};-\frac {e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{9 d} \]
[In]
[Out]
Integral number [411] \[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^r} \, dx \]
[B] time = 0.05181 (sec), size = 69 ,normalized size = 3. \[ \frac {x \left (-b n \, _3F_2\left (1,\frac {1}{r},\frac {1}{r};1+\frac {1}{r},1+\frac {1}{r};-\frac {e x^r}{d}\right )+\, _2F_1\left (1,\frac {1}{r};1+\frac {1}{r};-\frac {e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{d} \]
[In]
[Out]
Integral number [412] \[ \int \frac {a+b \log \left (c x^n\right )}{x^2 \left (d+e x^r\right )} \, dx \]
[B] time = 0.064875 (sec), size = 83 ,normalized size = 3.19 \[ -\frac {b n \, _3F_2\left (1,-\frac {1}{r},-\frac {1}{r};1-\frac {1}{r},1-\frac {1}{r};-\frac {e x^r}{d}\right )+\, _2F_1\left (1,-\frac {1}{r};\frac {-1+r}{r};-\frac {e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )}{d x} \]
[In]
[Out]
Integral number [413] \[ \int \frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 0.161798 (sec), size = 140 ,normalized size = 5.38 \[ \frac {x^4 \left (-b n (-4+r) \left (d+e x^r\right ) \, _3F_2\left (1,\frac {4}{r},\frac {4}{r};1+\frac {4}{r},1+\frac {4}{r};-\frac {e x^r}{d}\right )+16 d \left (a+b \log \left (c x^n\right )\right )+4 \left (d+e x^r\right ) \, _2F_1\left (1,\frac {4}{r};\frac {4+r}{r};-\frac {e x^r}{d}\right ) \left (-b n+a (-4+r)+b (-4+r) \log \left (c x^n\right )\right )\right )}{16 d^2 r \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [414] \[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 0.149491 (sec), size = 140 ,normalized size = 5.83 \[ \frac {x^2 \left (-b n (-2+r) \left (d+e x^r\right ) \, _3F_2\left (1,\frac {2}{r},\frac {2}{r};1+\frac {2}{r},1+\frac {2}{r};-\frac {e x^r}{d}\right )+4 d \left (a+b \log \left (c x^n\right )\right )+2 \left (d+e x^r\right ) \, _2F_1\left (1,\frac {2}{r};\frac {2+r}{r};-\frac {e x^r}{d}\right ) \left (-b n+a (-2+r)+b (-2+r) \log \left (c x^n\right )\right )\right )}{4 d^2 r \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [416] \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^r\right )^2} \, dx \]
[B] time = 0.150218 (sec), size = 139 ,normalized size = 5.35 \[ -\frac {b n (2+r) \left (d+e x^r\right ) \, _3F_2\left (1,-\frac {2}{r},-\frac {2}{r};1-\frac {2}{r},1-\frac {2}{r};-\frac {e x^r}{d}\right )-4 d \left (a+b \log \left (c x^n\right )\right )+2 \left (d+e x^r\right ) \, _2F_1\left (1,-\frac {2}{r};\frac {-2+r}{r};-\frac {e x^r}{d}\right ) \left (-b n+a (2+r)+b (2+r) \log \left (c x^n\right )\right )}{4 d^2 r x^2 \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [417] \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 0.152317 (sec), size = 140 ,normalized size = 5.38 \[ \frac {x^3 \left (-b n (-3+r) \left (d+e x^r\right ) \, _3F_2\left (1,\frac {3}{r},\frac {3}{r};1+\frac {3}{r},1+\frac {3}{r};-\frac {e x^r}{d}\right )+9 d \left (a+b \log \left (c x^n\right )\right )+3 \left (d+e x^r\right ) \, _2F_1\left (1,\frac {3}{r};\frac {3+r}{r};-\frac {e x^r}{d}\right ) \left (-b n+a (-3+r)+b (-3+r) \log \left (c x^n\right )\right )\right )}{9 d^2 r \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [418] \[ \int \frac {a+b \log \left (c x^n\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 1.97465 (sec), size = 161 ,normalized size = 7. \[ \frac {x \left (a d r \, _2F_1\left (2,\frac {1}{r};1+\frac {1}{r};-\frac {e x^r}{d}\right )+a e r x^r \, _2F_1\left (2,\frac {1}{r};1+\frac {1}{r};-\frac {e x^r}{d}\right )-b n (-1+r) \left (d+e x^r\right ) \, _3F_2\left (1,\frac {1}{r},\frac {1}{r};1+\frac {1}{r},1+\frac {1}{r};-\frac {e x^r}{d}\right )+b d \log \left (c x^n\right )-b \left (d+e x^r\right ) \, _2F_1\left (1,\frac {1}{r};1+\frac {1}{r};-\frac {e x^r}{d}\right ) \left (n-(-1+r) \log \left (c x^n\right )\right )\right )}{d^2 r \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [419] \[ \int \frac {a+b \log \left (c x^n\right )}{x^2 \left (d+e x^r\right )^2} \, dx \]
[B] time = 0.129567 (sec), size = 135 ,normalized size = 5.19 \[ \frac {-b n (1+r) \left (d+e x^r\right ) \, _3F_2\left (1,-\frac {1}{r},-\frac {1}{r};1-\frac {1}{r},1-\frac {1}{r};-\frac {e x^r}{d}\right )+d \left (a+b \log \left (c x^n\right )\right )-\left (d+e x^r\right ) \, _2F_1\left (1,-\frac {1}{r};\frac {-1+r}{r};-\frac {e x^r}{d}\right ) \left (a-b n+a r+b (1+r) \log \left (c x^n\right )\right )}{d^2 r x \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [444] \[ \int \frac {(f x)^m \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]
[B] time = 0.089494 (sec), size = 111 ,normalized size = 3.96 \[ \frac {x (f x)^m \left (-b n \, _3F_2\left (1,\frac {1}{r}+\frac {m}{r},\frac {1}{r}+\frac {m}{r};1+\frac {1}{r}+\frac {m}{r},1+\frac {1}{r}+\frac {m}{r};-\frac {e x^r}{d}\right )+(1+m) \, _2F_1\left (1,\frac {1+m}{r};\frac {1+m+r}{r};-\frac {e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{d (1+m)^2} \]
[In]
[Out]
Integral number [445] \[ \int \frac {(f x)^m \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 0.245739 (sec), size = 177 ,normalized size = 6.32 \[ \frac {x (f x)^m \left (b n (1+m-r) \left (d+e x^r\right ) \, _3F_2\left (1,\frac {1}{r}+\frac {m}{r},\frac {1}{r}+\frac {m}{r};1+\frac {1}{r}+\frac {m}{r},1+\frac {1}{r}+\frac {m}{r};-\frac {e x^r}{d}\right )-(1+m) \left (-d (1+m) \left (a+b \log \left (c x^n\right )\right )+\left (d+e x^r\right ) \, _2F_1\left (1,\frac {1+m}{r};\frac {1+m+r}{r};-\frac {e x^r}{d}\right ) \left (b n+a (1+m-r)+b (1+m-r) \log \left (c x^n\right )\right )\right )\right )}{d^2 (1+m)^2 r \left (d+e x^r\right )} \]
[In]
[Out]