Integral number [138] \[ \int (g x)^q \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.205894 (sec), size = 304 ,normalized size = 9.81 \[ \frac {x (g x)^q \left (-a k m+2 b k m n-a k m q-b k m n \, _3F_2\left (1,\frac {1}{m}+\frac {q}{m},\frac {1}{m}+\frac {q}{m};1+\frac {1}{m}+\frac {q}{m},1+\frac {1}{m}+\frac {q}{m};-\frac {f x^m}{e}\right )-b k m \log \left (c x^n\right )-b k m q \log \left (c x^n\right )+k m \, _2F_1\left (1,\frac {1+q}{m};\frac {1+m+q}{m};-\frac {f x^m}{e}\right ) \left (a-b n+a q+b (1+q) \log \left (c x^n\right )\right )+a \log \left (d \left (e+f x^m\right )^k\right )-b n \log \left (d \left (e+f x^m\right )^k\right )+2 a q \log \left (d \left (e+f x^m\right )^k\right )-b n q \log \left (d \left (e+f x^m\right )^k\right )+a q^2 \log \left (d \left (e+f x^m\right )^k\right )+b \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+2 b q \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b q^2 \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )\right )}{(1+q)^3} \]
[In]
[Out]
Integral number [144] \[ \int x^2 \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.133774 (sec), size = 292 ,normalized size = 10.07 \[ -\frac {x^3 \left (-6 b e k m n-2 b e k m^2 n+9 a f k m x^m \, _2F_1\left (1,\frac {3+m}{m};2+\frac {3}{m};-\frac {f x^m}{e}\right )+b e k m (3+m) n \, _3F_2\left (1,\frac {3}{m},\frac {3}{m};1+\frac {3}{m},1+\frac {3}{m};-\frac {f x^m}{e}\right )+b e k m (3+m) \, _2F_1\left (1,\frac {3}{m};\frac {3+m}{m};-\frac {f x^m}{e}\right ) \left (n-3 \log \left (c x^n\right )\right )+9 b e k m \log \left (c x^n\right )+3 b e k m^2 \log \left (c x^n\right )-27 a e \log \left (d \left (e+f x^m\right )^k\right )-9 a e m \log \left (d \left (e+f x^m\right )^k\right )+9 b e n \log \left (d \left (e+f x^m\right )^k\right )+3 b e m n \log \left (d \left (e+f x^m\right )^k\right )-27 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-9 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )\right )}{27 e (3+m)} \]
[In]
[Out]
Integral number [145] \[ \int x \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.125026 (sec), size = 292 ,normalized size = 10.81 \[ -\frac {x^2 \left (-4 b e k m n-2 b e k m^2 n+4 a f k m x^m \, _2F_1\left (1,\frac {2+m}{m};2+\frac {2}{m};-\frac {f x^m}{e}\right )+b e k m (2+m) n \, _3F_2\left (1,\frac {2}{m},\frac {2}{m};1+\frac {2}{m},1+\frac {2}{m};-\frac {f x^m}{e}\right )+b e k m (2+m) \, _2F_1\left (1,\frac {2}{m};\frac {2+m}{m};-\frac {f x^m}{e}\right ) \left (n-2 \log \left (c x^n\right )\right )+4 b e k m \log \left (c x^n\right )+2 b e k m^2 \log \left (c x^n\right )-8 a e \log \left (d \left (e+f x^m\right )^k\right )-4 a e m \log \left (d \left (e+f x^m\right )^k\right )+4 b e n \log \left (d \left (e+f x^m\right )^k\right )+2 b e m n \log \left (d \left (e+f x^m\right )^k\right )-8 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-4 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )\right )}{8 e (2+m)} \]
[In]
[Out]
Integral number [146] \[ \int \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.118708 (sec), size = 165 ,normalized size = 6.35 \[ b k m n x-k m x \left (a+b \left (-n \log (x)+\log \left (c x^n\right )\right )\right )+x \left (b k m n-b k m n \, _3F_2\left (1,\frac {1}{m},\frac {1}{m};1+\frac {1}{m},1+\frac {1}{m};-\frac {f x^m}{e}\right )-b k m n \log (x)+k m \, _2F_1\left (1,\frac {1}{m};1+\frac {1}{m};-\frac {f x^m}{e}\right ) \left (a-b n+b \log \left (c x^n\right )\right )+a \log \left (d \left (e+f x^m\right )^k\right )-b n \log \left (d \left (e+f x^m\right )^k\right )+b \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )\right ) \]
[In]
[Out]
Integral number [148] \[ \int \frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right )}{x^2} \, dx \]
[B] time = 0.117701 (sec), size = 282 ,normalized size = 9.72 \[ \frac {2 b e k m n-2 b e k m^2 n+a f k m x^m \, _2F_1\left (1,\frac {-1+m}{m};2-\frac {1}{m};-\frac {f x^m}{e}\right )+b e k (-1+m) m n \, _3F_2\left (1,-\frac {1}{m},-\frac {1}{m};1-\frac {1}{m},1-\frac {1}{m};-\frac {f x^m}{e}\right )+b e k m \log \left (c x^n\right )-b e k m^2 \log \left (c x^n\right )+b e k (-1+m) m \, _2F_1\left (1,-\frac {1}{m};\frac {-1+m}{m};-\frac {f x^m}{e}\right ) \left (n+\log \left (c x^n\right )\right )+a e \log \left (d \left (e+f x^m\right )^k\right )-a e m \log \left (d \left (e+f x^m\right )^k\right )+b e n \log \left (d \left (e+f x^m\right )^k\right )-b e m n \log \left (d \left (e+f x^m\right )^k\right )+b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )}{e (-1+m) x} \]
[In]
[Out]
Integral number [149] \[ \int \frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right )}{x^3} \, dx \]
[B] time = 0.115654 (sec), size = 292 ,normalized size = 10.07 \[ \frac {4 b e k m n-2 b e k m^2 n+4 a f k m x^m \, _2F_1\left (1,\frac {-2+m}{m};2-\frac {2}{m};-\frac {f x^m}{e}\right )+b e k (-2+m) m n \, _3F_2\left (1,-\frac {2}{m},-\frac {2}{m};1-\frac {2}{m},1-\frac {2}{m};-\frac {f x^m}{e}\right )+4 b e k m \log \left (c x^n\right )-2 b e k m^2 \log \left (c x^n\right )+b e k (-2+m) m \, _2F_1\left (1,-\frac {2}{m};\frac {-2+m}{m};-\frac {f x^m}{e}\right ) \left (n+2 \log \left (c x^n\right )\right )+8 a e \log \left (d \left (e+f x^m\right )^k\right )-4 a e m \log \left (d \left (e+f x^m\right )^k\right )+4 b e n \log \left (d \left (e+f x^m\right )^k\right )-2 b e m n \log \left (d \left (e+f x^m\right )^k\right )+8 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-4 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )}{8 e (-2+m) x^2} \]
[In]
[Out]
Integral number [220] \[ \int -(d x)^m \left (a+b \log \left (c x^n\right )\right ) \log \left (1-e x^q\right ) \, dx \]
[B] time = 0.14394 (sec), size = 266 ,normalized size = 8.87 \[ -\frac {x (d x)^m \left (-a q-a m q+2 b n q-b n q \, _3F_2\left (1,\frac {1}{q}+\frac {m}{q},\frac {1}{q}+\frac {m}{q};1+\frac {1}{q}+\frac {m}{q},1+\frac {1}{q}+\frac {m}{q};e x^q\right )-b q \log \left (c x^n\right )-b m q \log \left (c x^n\right )+q \, _2F_1\left (1,\frac {1+m}{q};\frac {1+m+q}{q};e x^q\right ) \left (a+a m-b n+b (1+m) \log \left (c x^n\right )\right )+a \log \left (1-e x^q\right )+2 a m \log \left (1-e x^q\right )+a m^2 \log \left (1-e x^q\right )-b n \log \left (1-e x^q\right )-b m n \log \left (1-e x^q\right )+b \log \left (c x^n\right ) \log \left (1-e x^q\right )+2 b m \log \left (c x^n\right ) \log \left (1-e x^q\right )+b m^2 \log \left (c x^n\right ) \log \left (1-e x^q\right )\right )}{(1+m)^3} \]
[In]
[Out]
Integral number [220] \[ \int -(d x)^m \left (a+b \log \left (c x^n\right )\right ) \log \left (1-e x^q\right ) \, dx \]
[B] time = 0.399 (sec), size = 844 ,normalized size = 28.13
method | result | size |
meijerg | \(-\frac {\left (d x \right )^{m} x^{-m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} a \left (\frac {q \,x^{1+m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (1-e \,x^{q}\right )}{1+m}-\frac {q \,x^{1+m +q} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \left (-q -m -1\right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m +q \right ) \left (1+m \right )}\right )}{q}-\frac {\left (d x \right )^{m} x^{-m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} b \ln \left (c \right ) \left (\frac {q \,x^{1+m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (1-e \,x^{q}\right )}{1+m}-\frac {q \,x^{1+m +q} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \left (-q -m -1\right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m +q \right ) \left (1+m \right )}\right )}{q}+\left (\frac {\left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} \ln \left (-e \right ) \left (d x \right )^{m} x^{-m} b n \left (\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (1-e \,x^{q}\right )}{1+m}-\frac {q \,x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \left (-q -m -1\right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m +q \right ) \left (1+m \right )}\right )}{q^{2}}-\frac {\left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} \left (d x \right )^{m} x^{-m} b n \left (\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (x \right ) \ln \left (1-e \,x^{q}\right )}{1+m}+\frac {x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \ln \left (1-e \,x^{q}\right )}{1+m}-\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (1-e \,x^{q}\right )}{\left (1+m \right )^{2}}+\frac {q \,x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \left (-q -m -1\right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m +q \right )^{2} \left (1+m \right )}-\frac {q \,x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (x \right ) \left (-q -m -1\right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m +q \right ) \left (1+m \right )}-\frac {x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \left (-q -m -1\right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m +q \right ) \left (1+m \right )}+\frac {q \,x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m +q \right ) \left (1+m \right )}+\frac {q \,x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \left (-q -m -1\right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m +q \right ) \left (1+m \right )^{2}}+\frac {x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \left (-q -m -1\right ) \Phi \left (e \,x^{q}, 2, \frac {1+m +q}{q}\right )}{\left (1+m +q \right ) \left (1+m \right )}\right )}{q}\right ) x\) | \(844\) |
[In]
[Out]
Integral number [221] \[ \int (d x)^m \left (a+b \log \left (c x^n\right )\right ) \text {Li}_2\left (e x^q\right ) \, dx \]
[B] time = 0.212 (sec), size = 867 ,normalized size = 4.87
method | result | size |
meijerg | \(-\frac {\left (d x \right )^{m} x^{-m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} a \left (-\frac {q^{2} x^{1+m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (1-e \,x^{q}\right )}{\left (1+m \right )^{2}}-\frac {q \,x^{1+m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right )}{1+m}-\frac {q^{2} x^{1+m +q} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m \right )^{2}}\right )}{q}-\frac {\left (d x \right )^{m} x^{-m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} b \ln \left (c \right ) \left (-\frac {q^{2} x^{1+m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (1-e \,x^{q}\right )}{\left (1+m \right )^{2}}-\frac {q \,x^{1+m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right )}{1+m}-\frac {q^{2} x^{1+m +q} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m \right )^{2}}\right )}{q}+\left (\frac {\left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} \ln \left (-e \right ) \left (d x \right )^{m} x^{-m} b n \left (-\frac {q^{2} x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (1-e \,x^{q}\right )}{\left (1+m \right )^{2}}-\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right )}{1+m}-\frac {q^{2} x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m \right )^{2}}\right )}{q^{2}}-\frac {\left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} \left (d x \right )^{m} x^{-m} b n \left (-\frac {q^{2} x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (x \right ) \ln \left (1-e \,x^{q}\right )}{\left (1+m \right )^{2}}-\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \ln \left (1-e \,x^{q}\right )}{\left (1+m \right )^{2}}+\frac {2 q^{2} x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (1-e \,x^{q}\right )}{\left (1+m \right )^{3}}-\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (x \right ) \polylog \left (2, e \,x^{q}\right )}{1+m}-\frac {x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \polylog \left (2, e \,x^{q}\right )}{1+m}+\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right )}{\left (1+m \right )^{2}}-\frac {q^{2} x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (x \right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m \right )^{2}}-\frac {q \,x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m \right )^{2}}+\frac {2 q^{2} x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {1+m +q}{q}\right )}{\left (1+m \right )^{3}}+\frac {q \,x^{q +m} e \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 2, \frac {1+m +q}{q}\right )}{\left (1+m \right )^{2}}\right )}{q}\right ) x\) | \(867\) |
[In]
[Out]
Integral number [222] \[ \int (d x)^m \left (a+b \log \left (c x^n\right )\right ) \text {Li}_3\left (e x^q\right ) \, dx \]
[B] time = 0.86 (sec), size = 1065 ,normalized size = 4.35
method | result | size |
meijerg | \(\text {Expression too large to display}\) | \(1065\) |
[In]
[Out]