3.4.5 \(\int \frac {1}{x^2 \sqrt {\frac {e (a+b x^2)}{c+d x^2}}} \, dx\) [305]

Optimal. Leaf size=289 \[ -\frac {a+b x^2}{a x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {d x \left (a+b x^2\right )}{a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \]

[Out]

(-b*x^2-a)/a/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+d*x*(b*x^2+a)/a/(d*x^2+c)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-(b*x^2+a)
*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1
/2)*d^(1/2)/a/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+(b*x^2+a)*(1/(1+d*x^2/c)
)^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*d^(1/2)/a/(
d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 289, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {1986, 486, 21, 433, 429, 506, 422} \begin {gather*} \frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {a+b x^2}{a x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {d x \left (a+b x^2\right )}{a \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

-((a + b*x^2)/(a*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])) + (d*x*(a + b*x^2))/(a*Sqrt[(e*(a + b*x^2))/(c + d*x^2)
]*(c + d*x^2)) - (Sqrt[c]*Sqrt[d]*(a + b*x^2)*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*Sqrt
[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2)) + (Sqrt[c]*Sqrt[d]*(a + b*x^2
)*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a
 + b*x^2))/(c + d*x^2)]*(c + d*x^2))

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 433

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx &=\frac {\sqrt {a+b x^2} \int \frac {\sqrt {c+d x^2}}{x^2 \sqrt {a+b x^2}} \, dx}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{a x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\sqrt {a+b x^2} \int \frac {a d+b d x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{a x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\left (d \sqrt {a+b x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2}} \, dx}{a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{a x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\left (d \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}+\frac {\left (b d \sqrt {a+b x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{a x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {d x \left (a+b x^2\right )}{a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\left (c d \sqrt {a+b x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{a x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {d x \left (a+b x^2\right )}{a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.10, size = 111, normalized size = 0.38 \begin {gather*} \frac {\left (a+b x^2\right ) \left (-\frac {1}{x}+\frac {d \sqrt {1+\frac {d x^2}{c}} E\left (\sin ^{-1}\left (\sqrt {-\frac {d}{c}} x\right )|\frac {b c}{a d}\right )}{\sqrt {-\frac {d}{c}} \sqrt {1+\frac {b x^2}{a}} \left (c+d x^2\right )}\right )}{a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

((a + b*x^2)*(-x^(-1) + (d*Sqrt[1 + (d*x^2)/c]*EllipticE[ArcSin[Sqrt[-(d/c)]*x], (b*c)/(a*d)])/(Sqrt[-(d/c)]*S
qrt[1 + (b*x^2)/a]*(c + d*x^2))))/(a*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 297, normalized size = 1.03

method result size
default \(-\frac {\left (b \,x^{2}+a \right ) \left (\sqrt {-\frac {b}{a}}\, b d \,x^{4}-\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a d x +b c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, x \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right )-b c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, x \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right )+\sqrt {-\frac {b}{a}}\, a d \,x^{2}+\sqrt {-\frac {b}{a}}\, b c \,x^{2}+\sqrt {-\frac {b}{a}}\, a c \right )}{\sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a x \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(297\)
risch \(-\frac {b \,x^{2}+a}{a x \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}+\frac {d \left (-\frac {2 b a c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}+\frac {a \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}\right ) \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{a \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(344\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(b*x^2+a)*((-b/a)^(1/2)*b*d*x^4-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1
/2))*a*d*x+b*c*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*x*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))-b*c*((b*x^2
+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*x*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))+(-b/a)^(1/2)*a*d*x^2+(-b/a)^(1/2)
*b*c*x^2+(-b/a)^(1/2)*a*c)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/a/x/(-b/a)^(1/2)/(b*d*x^4
+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

e^(-1/2)*integrate(1/(x^2*sqrt((b*x^2 + a)/(d*x^2 + c))), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(e^(-1/2)/(x^2*sqrt((b*x^2 + a)/(d*x^2 + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^2\,\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*((e*(a + b*x^2))/(c + d*x^2))^(1/2)),x)

[Out]

int(1/(x^2*((e*(a + b*x^2))/(c + d*x^2))^(1/2)), x)

________________________________________________________________________________________