3.4.6 \(\int \frac {1}{x^4 \sqrt {\frac {e (a+b x^2)}{c+d x^2}}} \, dx\) [306]

Optimal. Leaf size=375 \[ \frac {-a-b x^2}{3 a x^3 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(2 b c-a d) \left (a+b x^2\right )}{3 a^2 c x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {d (2 b c-a d) x \left (a+b x^2\right )}{3 a^2 c \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\sqrt {d} (2 b c-a d) \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {b \sqrt {c} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \]

[Out]

1/3*(-b*x^2-a)/a/x^3/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+1/3*(-a*d+2*b*c)*(b*x^2+a)/a^2/c/x/(e*(b*x^2+a)/(d*x^2+c))^
(1/2)-1/3*d*(-a*d+2*b*c)*x*(b*x^2+a)/a^2/c/(d*x^2+c)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+1/3*(-a*d+2*b*c)*(b*x^2+a)*
(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/
2)/a^2/(d*x^2+c)/c^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-1/3*b*(b*x^2+a)*(1/(1+d
*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*d^(1
/2)/a^2/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 372, normalized size of antiderivative = 0.99, number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {1986, 486, 597, 545, 429, 506, 422} \begin {gather*} -\frac {b \sqrt {c} \sqrt {d} \left (a+b x^2\right ) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\sqrt {d} \left (a+b x^2\right ) (2 b c-a d) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\left (a+b x^2\right ) (2 b c-a d)}{3 a^2 c x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {d x \left (a+b x^2\right ) (2 b c-a d)}{3 a^2 c \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {a+b x^2}{3 a x^3 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^4*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

-1/3*(a + b*x^2)/(a*x^3*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) + ((2*b*c - a*d)*(a + b*x^2))/(3*a^2*c*x*Sqrt[(e*(a
 + b*x^2))/(c + d*x^2)]) - (d*(2*b*c - a*d)*x*(a + b*x^2))/(3*a^2*c*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x
^2)) + (Sqrt[d]*(2*b*c - a*d)*(a + b*x^2)*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*a^2*Sqrt
[c]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2)) - (b*Sqrt[c]*Sqrt[d]*
(a + b*x^2)*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*a^2*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2
))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx &=\frac {\sqrt {a+b x^2} \int \frac {\sqrt {c+d x^2}}{x^4 \sqrt {a+b x^2}} \, dx}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{3 a x^3 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\sqrt {a+b x^2} \int \frac {-2 b c+a d-b d x^2}{x^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{3 a x^3 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(2 b c-a d) \left (a+b x^2\right )}{3 a^2 c x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\sqrt {a+b x^2} \int \frac {a b c d+b d (2 b c-a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a^2 c \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{3 a x^3 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(2 b c-a d) \left (a+b x^2\right )}{3 a^2 c x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\left (b d \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}-\frac {\left (b d (2 b c-a d) \sqrt {a+b x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a^2 c \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{3 a x^3 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(2 b c-a d) \left (a+b x^2\right )}{3 a^2 c x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {d (2 b c-a d) x \left (a+b x^2\right )}{3 a^2 c \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {b \sqrt {c} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\left (d (2 b c-a d) \sqrt {a+b x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 a^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=-\frac {a+b x^2}{3 a x^3 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(2 b c-a d) \left (a+b x^2\right )}{3 a^2 c x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {d (2 b c-a d) x \left (a+b x^2\right )}{3 a^2 c \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\sqrt {d} (2 b c-a d) \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {b \sqrt {c} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.46, size = 238, normalized size = 0.63 \begin {gather*} \frac {-\sqrt {\frac {b}{a}} \left (a+b x^2\right ) \left (c+d x^2\right ) \left (-2 b c x^2+a \left (c+d x^2\right )\right )-i b c (-2 b c+a d) x^3 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+2 i b c (-b c+a d) x^3 \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 a^2 \sqrt {\frac {b}{a}} c x^3 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

(-(Sqrt[b/a]*(a + b*x^2)*(c + d*x^2)*(-2*b*c*x^2 + a*(c + d*x^2))) - I*b*c*(-2*b*c + a*d)*x^3*Sqrt[1 + (b*x^2)
/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + (2*I)*b*c*(-(b*c) + a*d)*x^3*Sqrt[1 +
 (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*a^2*Sqrt[b/a]*c*x^3*Sqrt[(e
*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 444, normalized size = 1.18

method result size
risch \(-\frac {\left (b \,x^{2}+a \right ) \left (a d \,x^{2}-2 b c \,x^{2}+a c \right )}{3 a^{2} x^{3} c \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}-\frac {b d \left (\frac {2 \left (a d -2 b c \right ) a c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (a d e +b c e +e \left (a d -b c \right )\right )}+\frac {a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d e +b c e}{c e b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {d e b \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}\right ) \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{3 a^{2} c \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(377\)
default \(-\frac {\left (b \,x^{2}+a \right ) \left (\sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{6}-2 \sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{6}+2 b d \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) x^{3} a c -2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x^{3}-\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d \,x^{3}+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2} x^{3}+\sqrt {-\frac {b}{a}}\, a^{2} d^{2} x^{4}-2 \sqrt {-\frac {b}{a}}\, b^{2} c^{2} x^{4}+2 \sqrt {-\frac {b}{a}}\, a^{2} c d \,x^{2}-\sqrt {-\frac {b}{a}}\, a b \,c^{2} x^{2}+\sqrt {-\frac {b}{a}}\, a^{2} c^{2}\right )}{3 \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, a^{2} x^{3} c \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(444\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*(b*x^2+a)*((-b/a)^(1/2)*a*b*d^2*x^6-2*(-b/a)^(1/2)*b^2*c*d*x^6+2*b*d*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1
/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*x^3*a*c-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-
b/a)^(1/2),(a*d/b/c)^(1/2))*b^2*c^2*x^3-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/
b/c)^(1/2))*a*b*c*d*x^3+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^
2*c^2*x^3+(-b/a)^(1/2)*a^2*d^2*x^4-2*(-b/a)^(1/2)*b^2*c^2*x^4+2*(-b/a)^(1/2)*a^2*c*d*x^2-(-b/a)^(1/2)*a*b*c^2*
x^2+(-b/a)^(1/2)*a^2*c^2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/a^2/x^3/c/(-b/a)^(1/2)/(b*
d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

e^(-1/2)*integrate(1/(x^4*sqrt((b*x^2 + a)/(d*x^2 + c))), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(e^(-1/2)/(x^4*sqrt((b*x^2 + a)/(d*x^2 + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^4\,\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*((e*(a + b*x^2))/(c + d*x^2))^(1/2)),x)

[Out]

int(1/(x^4*((e*(a + b*x^2))/(c + d*x^2))^(1/2)), x)

________________________________________________________________________________________